skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Engaging Future Engineers through Active Participation in Diversity, Equity, Inclusion, and Belonging.
It is important for future engineers to understand themselves in relation to the many cultural influences they may encounter during their career, and to confront their own biases when interacting with colleagues whose cultural backgrounds are different from their own. This paper describes and evaluates a series of nine diversity, equity, and inclusion (DEI) workshops developed and implemented during the summer of 2022 for high school and entering first-year college students enrolled in the Research, Academics, and Mentoring Pathways (RAMP) sixweek engineering summer bridge program at University of Massachusetts Lowell. The workshops incorporated activities designed to create an environment fostering respect, belonging, and acceptance to make teamwork more inclusive and effective. Each workshop was based on collaborative learning and used a broad range of strategies to engage students as active participants in learning about diversity, equity, and inclusion within the context of teamwork. To develop the workshops, the facilitators aligned the activities with key themes from chapters in the book From Athletics to Engineering: 8 Ways to Support Diversity, Equity, and Inclusion for All [1]. The summer bridge program was evaluated using quantitative and qualitative data collected throughout the program and upon its conclusion tracking students’ reactions and levels of engagement in each of the program components. This included a pre-survey, mid-semester survey, post-survey, and weekly journal prompts on Google Classroom. We also used the Universality-Diversity scale [2] to measure any pre-post changes in students’ attitudes towards diversity. With regard to the workshops, an analysis of student responses indicated a high level of satisfaction and sense of accomplishment. Students reported they enjoyed getting to know each other better and that the DEI activities were interactive, educational, and engaging.  more » « less
Award ID(s):
2105701
PAR ID:
10525105
Author(s) / Creator(s):
; ;
Publisher / Repository:
ASEE Conferences
Date Published:
Format(s):
Medium: X
Location:
Baltimore , Maryland
Sponsoring Org:
National Science Foundation
More Like this
  1. It is important for future engineers to understand themselves in relation to the many cultural influences they may encounter during their career, and to confront their own biases when interacting with colleagues whose cultural backgrounds are different from their own. This paper describes and evaluates a series of nine diversity, equity, and inclusion (DEI) workshops developed and implemented during the summer of 2022 for high school and entering first-year college students enrolled in the Research, Academics, and Mentoring Pathways (RAMP) six week engineering summer bridge program at University of Massachusetts Lowell. The workshops incorporated activities designed to create an environment fostering respect, belonging, and acceptance to make teamwork more inclusive and effective. Each workshop was based on collaborative learning and used a broad range of strategies to engage students as active participants in learning about diversity, equity, and inclusion within the context of teamwork. To develop the workshops, the facilitators aligned the activities with key themes from chapters in the book From Athletics to Engineering: 8 Ways to Support Diversity, Equity, and Inclusion for All [1]. The summer bridge program was evaluated using quantitative and qualitative data collected throughout the program and upon its conclusion tracking students’ reactions and levels of engagement in each of the program components. This included a pre-survey, mid-semester survey, post-survey, and weekly journal prompts on Google Classroom. We also used the Universality-Diversity scale [2] to measure any pre-post changes in students’ attitudes towards diversity. With regard to the workshops, an analysis of student responses indicated a high level of satisfaction and sense of accomplishment. Students reported they enjoyed getting to know each other better and that the DEI activities were interactive, educational, and engaging. 
    more » « less
  2. There is substantial opportunity for engineering graduates to enter the workforce to engage in a fulfilling career and achieve social mobility, but there is a lack of adequate support for low income, academically talented students. The purpose of this poster is to describe the interventions designed to support S-STEM scholarship students at [blinded for review] University in the first year of our S-STEM project. Our S-STEM project objectives are threefold: 1) Provide scholarships to encourage talented students with low incomes and demonstrated financial need to initiate and graduate from engineering majors in the College of Engineering at [blinded] University and subsequently enter the engineering workforce or a graduate program; 2) Develop a support system that integrates multiple elements and services to foster a learning environment that motivates scholarship students to persist in their engineering studies; and 3) Foster an inclusive learning environment by engaging all engineering students in diversity, equity, and inclusion experiences and nurturing an equity mindset in student leaders through participation in training programs. To accomplish these goals, we identified 10 low-income, academically talented students to receive scholarships. We also identified 80 additional engineering students who wished to participate in the Engineering Living/Learning Community (ELC). The scholarships students and other interested students were placed in the ELC starting in Fall 2023, where they are experiencing first year engineering as a cohort. This cohort experience includes required seminars, required attendance of Engineering I and Calculus I in a designated section, and the option of living in a shared dorm to facilitate further collaboration. Seminars that are part of the ELC are focused on adjusting to college life (e.g., time management, course registration, resume design) and diversity, equity, and inclusion subjects, including upstander training and coping with imposter syndrome. Scholarship students are also being encouraged to engage in leadership training offered through the University. This leadership training also focuses on DEI topics, and encourages students to be informed advocates. Finally, this project is assessed by an external evaluator to determine the project’s impact on students’ motivation, sense of belonging, and their equity mindset. Evaluation data involve pre- and post-surveys of all first-year engineering students, and focus groups of project leaders, ELC mentors, scholarship students, and other engineering students. 
    more » « less
  3. Abstract Diversity, equity, and inclusion (DEI) are interconnected with bioengineering, yet have historically been absent from accreditation standards and curricula. Toward educating DEI-competent bioengineers and meeting evolving accreditation requirements, we took a program-level approach to incorporate, catalog, and assess DEI content through the bioengineering undergraduate program. To support instructors in adding DEI content and inclusive pedagogy, our team developed a DEI planning worksheet and surveyed instructors pre- and post-course. Over the academic year, 74% of instructors responded. Of responding instructors, 91% described at least one DEI curricular content improvement, and 88% incorporated at least one new inclusive pedagogical approach. Based on the curricular adjustments reported by instructors, we grouped the bioengineering-related DEI content into five DEI competency categories: bioethics, inclusive design, inclusive scholarship, inclusive professionalism, and systemic inequality. To assess the DEI content incorporation, we employed direct assessment via course assignments, end-of-module student surveys, end-of-term course evaluations, and an end-of-year program review. When asked how much their experience in the program helped them develop specific DEI competencies, students reported a relatively high average of 3.79 (scale of 1 = “not at all” to 5 = “very much”). Additionally, based on student performance in course assignments and other student feedback, we found that instructors were able to effectively incorporate DEI content into a wide variety of courses. We offer this framework and lessons learned to be adopted by programs similarly motivated to train DEI-competent engineering professionals and provide an equitable, inclusive education. 
    more » « less
  4. Transforming academic organizations to be more equitable and inclusive requires a range of change agents working together and engaging in diversity, equity, and inclusion (DEI) initiatives. Central to this DEI work is learning how to create change. Yet, change agents do not always know at the outset what resources are necessary to enact change; they often acquire the necessary resources and skills over time. This research paper investigates how change agents participating in a community of practice (CoP) across academic institutions learn about and mobilize resources to transform engineering education. This analysis of resource mobilization mechanisms comes from research with the National Science Foundation (NSF) Revolutionizing Engineering Departments (RED) grant recipient teams. To date, 26 teams have been funded through the RED mechanism to create revolutionary organizational and cultural changes within their departments with the goal of improving equity, inclusion, and educational outcomes. Projects vary in how they define and the degree to which they focus on equity. We find that resource mobilization practices in the CoP center and strengthen DEI values in two main ways. Firstly, participants learn about and gain access to resources that are explicitly DEIrelated: they mobilize resources to advance equity at the institutional level as an outcome of the projects and collaborate on additional projects to embed DEI into the process of change-making itself, starting from the initial stages of writing a proposal. Secondly, the way participants engage with each other, and approach change goals puts equity and inclusion into practice: participants identify and tackle structural barriers to change through DEI-aligned behaviors, from addressing how institutional circumstances create resistance to DEI, to developing a shared vision for systemic change that is inclusive and collaborative. 
    more » « less
  5. In this paper, we present the design and implementation of a set of diversity, equity, and inclusion (DEI) based modules, created to be deployed in two courses: one in introductory computing and one in algorithms. Our objective is to ensure that engineering undergraduate students, who are not historically exposed to DEI content, are introduced to these important topics in the context of their technical coursework and that they understand the relevance of DEI to their careers. We created 6 modules that cover a wide range of topics including untold stories throughout the history of computing and algorithms, identity and intersectionality in engineering, designs from engineering that have high societal impact, the LGBTQ+ experience in engineering, engineering and mental health, and cultural diversity within engineering. Each module gives a brief overview of the topic, followed by an associated assignment. We made all of these modules available to the students in the two courses and told them to choose one to complete. Each student engaged with their selected module in four specific ways: (1) watching a relevant video; (2) reading and annotating a provided article; (3) responding in a written reflection to a set of specific prompts relevant to the module; and (4) conducting an interview with a peer or community member using a list of suggested questions about the module’s contents . Afterwards, we required students to communicate what they learned through completing and submitting a graded final deliverable. This deliverable can be a video, slide presentation, a written op-ed piece, or a piece of art about the work they completed in the module. We evaluate the content of the modules through a survey that assesses the students’ interest in the modules and determines the utility of the modules in the context of the study of computing and algorithms. Based on the feedback of these surveys along with feedback from the instructors of the courses, we will further develop and improve the structure and content of these modules and expand their reach to additional engineering courses and disciplines. 
    more » « less