skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Magnetically actuated swimming and rolling erythrocyte-based biohybrid micromotors
Using a single rotating magnetic field, RBC biohybrid micromotors can be controlled to achieve propulsionviaswimming and rolling modes. The propulsion mechanism, directional control, and behavior in different fluids is investigated.  more » « less
Award ID(s):
1735968
PAR ID:
10525147
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
RSC Advances
Date Published:
Journal Name:
RSC Advances
Volume:
13
Issue:
44
ISSN:
2046-2069
Page Range / eLocation ID:
30951 to 30958
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the dynamics of dense three-dimensional systems of active particles for large persistence timesτpat constant average self-propulsion forcef. 
    more » « less
  2. Abstract BackgroundSoft robotic exosuits can provide partial dorsiflexor and plantarflexor support in parallel with paretic muscles to improve poststroke walking capacity. Previous results indicate that baseline walking ability may impact a user’s ability to leverage the exosuit assistance, while the effects on continuous walking, walking stability, and muscle slacking have not been evaluated. Here we evaluated the effects of a portable ankle exosuit during continuous comfortable overground walking in 19 individuals with chronic hemiparesis. We also compared two speed-based subgroups (threshold: 0.93 m/s) to address poststroke heterogeneity. MethodsWe refined a previously developed portable lightweight soft exosuit to support continuous overground walking. We compared five minutes of continuous walking in a laboratory with the exosuit to walking without the exosuit in terms of ground clearance, foot landing and propulsion, as well as the energy cost of transport, walking stability and plantarflexor muscle slacking. ResultsExosuit assistance was associated with improvements in the targeted gait impairments: 22% increase in ground clearance during swing, 5° increase in foot-to-floor angle at initial contact, and 22% increase in the center-of-mass propulsion during push-off. The improvements in propulsion and foot landing contributed to a 6.7% (0.04 m/s) increase in walking speed (R2 = 0.82). This enhancement in gait function was achieved without deterioration in muscle effort, stability or cost of transport. Subgroup analyses revealed that all individuals profited from ground clearance support, but slower individuals leveraged plantarflexor assistance to improve propulsion by 35% to walk 13% faster, while faster individuals did not change either. ConclusionsThe immediate restorative benefits of the exosuit presented here underline its promise for rehabilitative gait training in poststroke individuals. 
    more » « less
  3. Abstract Optimal fish array hydrodynamics in accelerating phalanx schools are investigated through a computational framework which combines high fidelity Computational Fluid Dynamics (CFD) simulations with a gradient free surrogate-based optimization algorithm. Critical parameters relevant to a phalanx fish school, such as midline kinematics, separation distance and phase synchronization, are investigated in light of efficient propulsion during an accelerating fish motion. Results show that the optimal midline kinematics in accelerating phalanx schools resemble those of accelerating solitary swimmers. The optimal separation distance in a phalanx school for thunniform biologically-inspired swimmers is shown to be around 2L(whereLis the swimmer’s total length). Furthermore, separation distance is shown to have a stronger effect,ceteris paribus, on the propulsion efficiency of a school when compared to phase synchronization. 
    more » « less
  4. The classical paper by Lighthill (Commun. Pure Appl. Maths, vol. 109, 1952, p. 118) on the propulsion of ciliated microorganisms has become the reference against which many modern studies on swimming in low Reynolds number are compared. However, Lighthill's study was limited to propulsion in a uniform flow, whereas several biologically relevant microorganisms experience non-uniform flows. Here we propose a benchmark for ciliary propulsion in paraboloidal flows. We first consider the axisymmetric problem, with the microorganisms on the centreline of the background flow, and derive exact analytical solutions for the flow field. Our results reveal flow features, swimming characteristics and performance metrics markedly different from those generated in a uniform flow. In particular, the background paraboloidal flow introduces a Stokes quadrupole singularity at the leading-order flow field, generating vortices. Moreover, we determine the necessary conditions on the strength of the background flow for optimal power dissipation and swimming efficiency. We then consider the more general case of a microorganism off the centreline of the background flow. In this case, the squirmer experiences a paraboloidal, linear shear and uniform flows due to its position relative to the flow's centreline. Our findings show that while the linear shear flow does not affect the translational and rotational velocities of the squirmer, it does influence the velocity field and, therefore, the power dissipation. 
    more » « less
  5. The drag coefficient bluegill sunfishLepomis macrochiruswas estimated from coasting deceleration as (mean ± SD) 0.0154 ± 0.0070 at a Reynolds number of 41,000 ± 14,000. This was within the coasting range in other species and lower than values obtained from dead drag measurements in this species and others. Low momentum losses during coasting may allow its use during intermittent propulsion to modulate power output or maximize energy economy. 
    more » « less