skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cumulative Difference Learning VAE for Time-Series with Temporally Correlated Inflow-Outflow
Time-series generation has crucial practical significance for decision-making under uncertainty. Existing methods have various limitations like accumulating errors over time, significantly impacting downstream tasks. We develop a novel generation method, DT-VAE, that incorporates generalizable domain knowledge, is mathematically justified, and significantly outperforms existing methods by mitigating error accumulation through a cumulative difference learning mechanism. We evaluate the performance of DT-VAE on several downstream tasks using both semi-synthetic and real time-series datasets, including benchmark datasets and our newly curated COVID-19 hospitalization datasets. The COVID-19 datasets enrich existing resources for time-series analysis. Additionally, we introduce Diverse Trend Preserving (DTP), a time-series clustering-based evaluation for direct and interpretable assessments of generated samples, serving as a valuable tool for evaluating time-series generative models.  more » « less
Award ID(s):
2146091
PAR ID:
10525249
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Proceedings of the AAAI Conference on Artificial Intelligence
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
38
Issue:
12
ISSN:
2159-5399
Page Range / eLocation ID:
13619 to 13627
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Real-world applications often involve irregular time series, for which the time intervals between successive observations are non-uniform. Irregularity across multiple features in a multi-variate time series further results in a different subset of features at any given time (i.e., asynchronicity). Existing pre-training schemes for time-series, however, often assume regularity of time series and make no special treatment of irregularity. We argue that such irregularity offers insight about domain property of the data—for example, frequency of hospital visits may signal patient health condition—that can guide representation learning. In this work, we propose PrimeNet to learn a self-supervised representation for irregular multivariate time-series. Specifically, we design a timesensitive contrastive learning and data reconstruction task to pre-train a model. Irregular time-series exhibits considerable variations in sampling density over time. Hence, our triplet generation strategy follows the density of the original data points, preserving its native irregularity. Moreover, the sampling density variation over time makes data reconstruction difficult for different regions. Therefore, we design a data masking technique that always masks a constant time duration to accommodate reconstruction for regions of different sampling density. We learn with these tasks using unlabeled data to build a pre-trained model and fine-tune on a downstream task with limited labeled data, in contrast with existing fully supervised approach for irregular time-series, requiring large amounts of labeled data. Experiment results show that PrimeNet significantly outperforms state-of-the-art methods on naturally irregular and asynchronous data from Healthcare and IoT applications for several downstream tasks, including classification, interpolation, and regression. 
    more » « less
  2. Abstract Realistic 3D indoor scene datasets have enabled significant recent progress in computer vision, scene understanding, autonomous navigation, and 3D reconstruction. But the scale, diversity, and customizability of existing datasets is limited, and it is time‐consuming and expensive to scan and annotate more. Fortunately, combinatorics is on our side: there are enough individualroomsin existing 3D scene datasets, if there was but a way to recombine them into new layouts. In this paper, we propose the task of generating novel 3D floor plans from existing 3D rooms. We identify three sub‐tasks of this problem: generation of 2D layout, retrieval of compatible 3D rooms, and deformation of 3D rooms to fit the layout. We then discuss different strategies for solving the problem, and design two representative pipelines: one uses available 2D floor plans to guide selection and deformation of 3D rooms; the other learns to retrieve a set of compatible 3D rooms and combine them into novel layouts. We design a set of metrics that evaluate the generated results with respect to each of the three subtasks and show that different methods trade off performance on these subtasks. Finally, we survey downstream tasks that benefit from generated 3D scenes and discuss strategies in selecting the methods most appropriate for the demands of these tasks. 
    more » « less
  3. Deep Learning (DL) methods have dramatically increased in popularity in recent years. While its initial success was demonstrated in the classification and manipulation of image data, there has been significant growth in the application of DL methods to problems in the biomedical sciences. However, the greater prevalence and complexity of missing data in biomedical datasets present significant challenges for DL methods. Here, we provide a formal treatment of missing data in the context of Variational Autoencoders (VAEs), a popular unsupervised DL architecture commonly used for dimension reduction, imputation, and learning latent representations of complex data. We propose a new VAE architecture, NIMIWAE, that is one of the first to flexibly account for both ignorable and non-ignorable patterns of missingness in input features at training time. Following training, samples can be drawn from the approximate posterior distribution of the missing data can be used for multiple imputation, facilitating downstream analyses on high dimensional incomplete datasets. We demonstrate through statistical simulation that our method outperforms existing approaches for unsupervised learning tasks and imputation accuracy. We conclude with a case study of an EHR dataset pertaining to 12,000 ICU patients containing a large number of diagnostic measurements and clinical outcomes, where many features are only partially observed. 
    more » « less
  4. Song, Dongjin; Xie, Yao; Purushotham, Sanjay; Chen, Haifeng; Shen, Cong (Ed.)
    Interpreting complex time series forecasting models is challenging due to the temporal dependencies between time steps and the dynamic relevance of input features over time. Existing interpretation methods are limited by focusing mostly on classification tasks, evaluating using custom baseline models instead of the latest time series models, using simple synthetic datasets, and requiring training another model. We introduce a novel interpretation method, Windowed Temporal Saliency Rescaling (WinTSR) addressing these limitations. WinTSR explicitly captures temporal dependencies among the past time steps and efficiently scales the feature importance with this time importance. We benchmark WinTSR against 10 recent interpretation techniques with 5 state-of-the-art deep-learning models of different architectures, including a time series foundation model. We use 3 real-world datasets for both time-series classification and regression. Our comprehensive analysis shows that WinTSR significantly outranks the other local interpretation methods in overall performance. Finally, we provide a novel and open-source framework to interpret the latest time series transformers and foundation models. 
    more » « less
  5. It is increasingly common to encounter prediction tasks in the biomedical sciences for which multiple datasets are available for model training. Common approaches such as pooling datasets before model fitting can produce poor out‐of‐study prediction performance when datasets are heterogeneous. Theoretical and applied work has shownmultistudy ensemblingto be a viable alternative that leverages the variability across datasets in a manner that promotes model generalizability. Multistudy ensembling uses a two‐stagestackingstrategy which fits study‐specific models and estimates ensemble weights separately. This approach ignores, however, the ensemble properties at the model‐fitting stage, potentially resulting in performance losses. Motivated by challenges in the estimation of COVID‐attributable mortality, we proposeoptimal ensemble construction, an approach to multistudy stacking whereby we jointly estimate ensemble weights and parameters associated with study‐specific models. We prove that limiting cases of our approach yield existing methods such as multistudy stacking and pooling datasets before model fitting. We propose an efficient block coordinate descent algorithm to optimize the loss function. We use our method to perform multicountry COVID‐19 baseline mortality prediction. We show that when little data is available for a country before the onset of the pandemic, leveraging data from other countries can substantially improve prediction accuracy. We further compare and characterize the method's performance in data‐driven simulations and other numerical experiments. Our method remains competitive with or outperforms multistudy stacking and other earlier methods in the COVID‐19 data application and in a range of simulation settings. 
    more » « less