skip to main content

Title: Fair Representation Learning: An Alternative to Mutual Information
Learning fair representations is an essential task to reduce bias in data-oriented decision making. It protects minority subgroups by requiring the learned representations to be independent of sensitive attributes. To achieve independence, the vast majority of the existing work primarily relaxes it to the minimization of the mutual information between sensitive attributes and learned representations. However, direct computation of mutual information is computationally intractable, and various upper bounds currently used either are still intractable or contradict the utility of the learned representations. In this paper, we introduce distance covariance as a new dependence measure into fair representation learning. By observing that sensitive attributes (e.g., gender, race, and age group) are typically categorical, the distance covariance can be converted to a tractable penalty term without contradicting the utility desideratum. Based on the tractable penalty, we propose FairDisCo, a variational method to learn fair representations. Experiments demonstrate that FairDisCo outperforms existing competitors for fair representation learning.  more » « less
Award ID(s):
2134079 1939725 1947135
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Page Range / eLocation ID:
1088 to 1097
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Algorithmic fairness is becoming increasingly important in data mining and machine learning. Among others, a foundational notation is group fairness. The vast majority of the existing works on group fairness, with a few exceptions, primarily focus on debiasing with respect to a single sensitive attribute, despite the fact that the co-existence of multiple sensitive attributes (e.g., gender, race, marital status, etc.) in the real-world is commonplace. As such, methods that can ensure a fair learning outcome with respect to all sensitive attributes of concern simultaneously need to be developed. In this paper, we study the problem of information-theoretic intersectional fairness (InfoFair), where statistical parity, a representative group fairness measure, is guaranteed among demographic groups formed by multiple sensitive attributes of interest. We formulate it as a mutual information minimization problem and propose a generic end-to-end algorithmic framework to solve it. The key idea is to leverage a variational representation of mutual information, which considers the variational distribution between learning outcomes and sensitive attributes, as well as the density ratio between the variational and the original distributions. Our proposed framework is generalizable to many different settings, including other statistical notions of fairness, and could handle any type of learning task equipped with a gradientbased optimizer. Empirical evaluations in the fair classification task on three real-world datasets demonstrate that our proposed framework can effectively debias the classification results with minimal impact to the classification accuracy. 
    more » « less
  2. Graph Neural Networks (GNNs) have shown great power in learning node representations on graphs. However, they may inherit historical prejudices from training data, leading to discriminatory bias in predictions. Although some work has developed fair GNNs, most of them directly borrow fair representation learning techniques from non-graph domains without considering the potential problem of sensitive attribute leakage caused by feature propagation in GNNs. However, we empirically observe that feature propagation could vary the correlation of previously innocuous non-sensitive features to the sensitive ones. This can be viewed as a leakage of sensitive information which could further exacerbate discrimination in predictions. Thus, we design two feature masking strategies according to feature correlations to highlight the importance of considering feature propagation and correlation variation in alleviating discrimination. Motivated by our analysis, we propose Fair View Graph Neural Network (FairVGNN) to generate fair views of features by automatically identifying and masking sensitive-correlated features considering correlation variation after feature propagation. Given the learned fair views, we adaptively clamp weights of the encoder to avoid using sensitive-related features. Experiments on real-world datasets demonstrate that FairVGNN enjoys a better trade-off between model utility and fairness. 
    more » « less
  3. Fairness-aware machine learning has attracted a surge of attention in many domains, such as online advertising, personalized recommendation, and social media analysis in web applications. Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age. Among many existing fairness notions, counterfactual fairness is a popular notion defined from a causal perspective. It measures the fairness of a predictor by comparing the prediction of each individual in the original world and that in the counterfactual worlds in which the value of the sensitive attribute is modified. A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data. However, in real-world scenarios, the underlying causal model is often unknown, and acquiring such human knowledge could be very difficult. In these scenarios, it is risky to directly trust the causal models obtained from information sources with unknown reliability and even causal discovery methods, as incorrect causal models can consequently bring biases to the predictor and lead to unfair predictions. In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE. Specifically, under certain general assumptions, CLAIRE effectively mitigates the biases from the sensitive attribute with a representation learning framework based on counterfactual data augmentation and an invariant penalty. Experiments conducted on both synthetic and real-world datasets validate the superiority of CLAIRE in both counterfactual fairness and prediction performance. 
    more » « less
  4. This work proposes a new computational framework for learning a structured generative model for real-world datasets. In particular, we propose to learn a Closed-loop Transcriptionbetween a multi-class, multi-dimensional data distribution and a Linear discriminative representation (CTRL) in the feature space that consists of multiple independent multi-dimensional linear subspaces. In particular, we argue that the optimal encoding and decoding mappings sought can be formulated as a two-player minimax game between the encoder and decoderfor the learned representation. A natural utility function for this game is the so-called rate reduction, a simple information-theoretic measure for distances between mixtures of subspace-like Gaussians in the feature space. Our formulation draws inspiration from closed-loop error feedback from control systems and avoids expensive evaluating and minimizing of approximated distances between arbitrary distributions in either the data space or the feature space. To a large extent, this new formulation unifies the concepts and benefits of Auto-Encoding and GAN and naturally extends them to the settings of learning a both discriminative and generative representation for multi-class and multi-dimensional real-world data. Our extensive experiments on many benchmark imagery datasets demonstrate tremendous potential of this new closed-loop formulation: under fair comparison, visual quality of the learned decoder and classification performance of the encoder is competitive and arguably better than existing methods based on GAN, VAE, or a combination of both. Unlike existing generative models, the so-learned features of the multiple classes are structured instead of hidden: different classes are explicitly mapped onto corresponding independent principal subspaces in the feature space, and diverse visual attributes within each class are modeled by the independent principal components within each subspace. 
    more » « less
  5. Fair representations are a powerful tool for establishing criteria like statistical parity, proxy non-discrimination, and equality of opportunity in learned models. Existing techniques for learning these representations are typically model-agnostic, as they preprocess the original data such that the output satisfies some fairness criterion, and can be used with arbitrary learning methods. In contrast, we demonstrate the promise of learning a model-aware fair representation, focusing on kernel-based models. We leverage the classical Sufficient Dimension Reduction (SDR) framework to construct representations as subspaces of the reproducing kernel Hilbert space (RKHS), whose member functions are guaranteed to satisfy fairness. Our method supports several fairness criteria, continuous and discrete data, and multiple protected attributes. We further show how to calibrate the accuracy tradeoff by characterizing it in terms of the principal angles between subspaces of the RKHS. Finally, we apply our approach to obtain the first Fair Gaussian Process (FGP) prior for fair Bayesian learning, and show that it is competitive with, and in some cases outperforms, state-of-the-art methods on real data. 
    more » « less