skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Influence of Thermal and Chemical Stresses on Thermal Properties, Crystal Morphology, and Mechanical Strength Development of a Sulfur Polymer Composite
The unique properties and sustainability advantages of sulfur polymer cement have led to efforts to use them as alternatives to traditional Portland cement. The current study explores the impact of environmental stresses on the strength development of polymer composite SunBG90, a material composed of animal and plant fats/oils vulcanized with 90 wt. % sulfur. The environmental stresses investigated include low temperature (−25 °C), high temperature (40 °C), and submersion in water, hexanes, or aqueous solutions containing strong electrolyte, strong acid, or strong base. Samples were analyzed for the extent to which exposure to these stresses influenced the thermo-morphological properties and the compressional strength of the materials compared to identical materials allowed to develop strength at room temperature. Differential scanning calorimetry (DSC) analysis revealed distinct thermos-morphological transitions in stressed samples and the notable formation of metastable γ-sulfur in hexane-exposed specimens. Powder X-ray diffraction confirmed that the crystalline domains identified by DSC were primarily γ-sulfur, with ~5% contribution of γ-sulfur in hexane-exposed samples. Compressive strength testing revealed high strength retention other than aging at elevated temperatures, which led to ~50% loss of strength. These findings reveal influences on the strength development of SunBG90, lending important insight into possible use as an alternative to OPC.  more » « less
Award ID(s):
2203669
PAR ID:
10525342
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Macromol
Volume:
4
Issue:
2
ISSN:
2673-6209
Page Range / eLocation ID:
240 to 252
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Low cost and high durability have made Portland cement the most widely‐used building material, but benefits are offset by environmental harm of cement production contributing 8–10% of total anthropogenic CO2gas emissions. High sulfur‐content materials (HSMs) are an alternative that can perform the binding roles as cements with a smaller carbon footprint, and possibly superior chemical, physical, and mechanical properties. Inverse vulcanization of 90 wt% sulfur with 10 wt% canola oil or sunflower oil to yield CanS or SunS, respectively. Notably, these HSMs prepared at temperatures ≤180 °C compared to >1200 °C hours for Portland cement CanS was combined with 5 wt% fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBFS), or metakaolin (MK) to give composites CanS‐FA, CanS‐SF, CanS‐GGBFS, and CanS‐MK, respectively. The analogous protocol with SunS likewise yielded SunS‐FA, SunS‐SF, SunS‐GGBFS, and SunS‐MK. Each of these HSMs exhibit high compressive mechanical strength, low water uptake values, and exceptional resistance to acid‐induced corrosion. All of the composites also exhibit superior compressive strength retention after exposure to acidic solutions, conditions under which Portland cement undergoes dissolution. The polymer cement‐pozzolan composites reported herein may thus serve as greener alternatives to traditional Portland cement in some applications. 
    more » « less
  2. Abstract Environmental damage caused by waste plastics and downstream chemical breakdown products is a modern crisis. Endocrine‐disrupting bisphenol A (BPA), found in breakdown products of poly(bisphenol A carbonate) (PC), is an especially pernicious example that interferes with the reproduction and development of a wide range of organisms, including humans. Herein we report a single‐stage thiocracking method to chemically upcycle polycarbonate using elemental sulfur, a waste product of fossil fuel refining. Importantly, this method disintegrates bisphenol A units into monoaryls, thus eliminating endocrine‐disrupting BPA from the material and from any potential downstream waste. Thiocracking of PC (10 wt%) with elemental sulfur (90 wt%) at 320 °C yields the highly crosslinked networkSPC90. The composition, thermal, morphological, and mechanical properties ofSPC90were characterized by FT‐IR spectroscopy, TGA, DSC, elemental analysis, SEM/EDX, compressive strength tests, and flexural strength tests. The compositeSPC90(compressive strength = 12.8 MPa, flexural strength = 4.33 MPa) showed mechanical strengths exceeding those of commercial bricks and competitive with those of mineral cements. The approach discussed herein represents a method to chemically upcycle polycarbonate while deconstructing BPA units, and valorizing waste sulfur to yield structurally viable building materials that could replace less‐green legacy materials. 
    more » « less
  3. Herein, a method to upcycle polyacrylonitrile (PAN) into high-sulfur-content materials (HSMs) by reacting 10 wt. % PAN with 90 wt. % elemental sulfur at 220 °C is reported. The resulting composites (PANS90) form glassy solids that display compressive, flexural, and tensile strengths comparable to or exceeding some common construction materials, including C62 brick. Comparison to other plastic-derived HSMs indicates that PANS90 exhibits mechanical properties including compressional strength (11.4 MPa), flexural strength (3.6 MPa) and tensile strength (2.5 MPa) within a similar or slightly improved range. Mechanistic investigations using small-molecule analogs (e.g., adiponitrile) suggest that thiophene ring formation and radical-driven sulfur–carbon bond formation are key reaction pathways, contributing to the composite’s crosslinked microstructure. Preliminary life cycle assessments estimate a global warming potential for PANS90 (0.33 kg CO2e/kg) that is about three times lower than that of Ordinary Portland Cement, underscoring its reduced environmental footprint. Overall, this sulfur-based upcycling strategy addresses two pressing waste-management concerns—surplus sulfur from petroleum refining and unrecycled PAN—while furnishing robust composites suitable for applications ranging from lightweight construction materials to specialty polymer systems. 
    more » « less
  4. Network polymers of sulfur and poly(4-allyloxystyrene), PAOSx ( x = percent by mass sulfur, where x is varied from 10–99), were prepared by reaction between poly(4-allyloxystyrene) with thermal homolytic ring-opened S 8 in a thiol-ene-type reaction. The extent to which sulfur content and crosslinking influence thermal/mechanical properties was assessed. Network materials having sulfur content below 50% were found to be thermosets, whereas those having >90% sulfur content are thermally healable and remeltable. DSC analysis revealed that low sulfur-content materials exhibited neither a T g nor a T m from −50 to 140 °C, whereas higher sulfur content materials featured T g or T m values that scale with the amount of sulfur. DSC data also revealed that sulfur-rich domains of PAOS90 are comprised of sulfur-crosslinked organic polymers and amorphous sulfur, whereas, sulfur-rich domains in PAOS99 are comprised largely of α-sulfur (orthorhombic sulfur). These conclusions are further corroborated by CS 2 -extraction and analysis of extractable/non-extractable fractions. Calculations based on TGA, FT-IR, H 2 S trapping experiments, CS 2 -extractable mass, and elemental combustion microanalysis data were used to assess the relative percentages of free and crosslinked sulfur and average number of S atoms per crosslink. Dynamic mechanical analyses indicate high storage moduli for PAOS90 and PAOS99 (on the order of 3 and 6 GPa at −37 °C, respectively), with a mechanical T g between −17 °C and 5 °C. A PAOS99 sample retains its full initial mechanical strength after at least 12 pulverization-thermal healing cycles, making it a candidate for facile repair and recyclability. 
    more » « less
  5. ABSTRACT Brown grease (BG) is a high‐free fatty acid (FFA) waste coproduct from the food industry that remains largely unexploited. Herein, we describe a design strategy to upcycle BG into high sulfur‐content materials (HSMs) via inverse vulcanization, circumventing the need for costly transition metals or food‐grade compatibilizers. First, BG was esterified with methyl or allyl groups, yielding MeBG and aBG, respectively. This modification masked the polar carboxylic acids and enhanced miscibility with molten sulfur. Subsequent inverse vulcanization produced remeltable HSMs at 80 or 90 wt% sulfur with uniform elemental distributions by SEM–EDX. FT‐IR spectroscopy revealed the consumption of C=C moieties and the formation of C–S bonds, signifying robust cross‐linking. Thermal analysis (TGA, DSC) indicated good thermal stability (Td,5%up to 223°C) and glass transitions characteristic of polysulfide networks. Mechanical evaluations demonstrated compressive strengths up to 19.2 MPa, exceeding the minimum requirement for residential foundation‐grade cement (17 MPa) and rivaling previously reported HSMs containing similarly high sulfur content. Notably, MeBG and aBG incorporate organics comprising up to 97 wt% BG, significantly improving the upcycled mass efficiency relative to earlier BG‐based composites. This esterification‐driven approach thus offers a practical, scalable pathway to convert low‐value BG into advanced materials with tunable thermomechanical properties. 
    more » « less