Catalysts are essential for mediating a controlled polymerization in atom transfer radical polymerization (ATRP). Copper-based catalysts are widely explored in ATRP and are highly efficient, leading to well-controlled polymerization of a variety of functional monomers. In addition to copper, iron-based complexes offer new opportunities in ATRP catalysis to develop environmentally friendly, less toxic, inexpensive, and abundant catalytic systems. Despite the high efficiency of iron catalysts in controlling polymerization of various monomers including methacrylates and styrene, ATRP of acrylate-based monomers by iron catalysts still remains a challenge. In this paper, we review the fundamentals and recent advances of iron-catalyzed ATRP focusing on development of ligands, catalyst design, and techniques used for iron catalysis in ATRP.
more »
« less
Block Copolymers of Polyolefins with Polyacrylates: Analyzing and Improving the Blocking Efficiencies Using MILRad/ATRP Approach
Abstract Despite their industrial ubiquity, polyolefin‐polyacrylate block copolymers are challenging to synthesize due to the distinct polymerization pathways necessary for respective blocks. This study utilizes MILRad, metal–organic insertion light‐initiated radical polymerization, to synthesize polyolefin‐b‐poly(methyl acrylate) copolymer by combining palladium‐catalyzed insertion–coordination polymerization and atom transfer radical polymerization (ATRP). Brookhart‐type Pd complexes used for the living polymerization of olefins are homolytically cleaved by blue‐light irradiation, generating polyolefin‐based macroradicals, which are trapped with functional nitroxide derivatives forming ATRP macroinitiators. ATRP in the presence of Cu(0), that is, supplemental activators and reducing agents , is used to polymerize methyl acrylate. An increase in the functionalization efficiency of up to 71% is demonstrated in this study by modifying the light source and optimizing the radical trapping condition. Regardless of the radical trapping efficiency, essentially quantitative chain extension of polyolefin‐Br macroinitiator with acrylates is consistently demonstrated, indicating successful second block formation.
more »
« less
- Award ID(s):
- 2108901
- PAR ID:
- 10525417
- Publisher / Repository:
- Wiley VCH
- Date Published:
- Journal Name:
- Macromolecular Rapid Communications
- Volume:
- 45
- Issue:
- 8
- ISSN:
- 1022-1336
- Page Range / eLocation ID:
- 2300675
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Vinyl ketone polymers, including poly(phenyl vinyl ketone) and poly(p-chlorophenyl vinyl ketone) were successfully synthesized under light using atom transfer radical polymerization (ATRP). This marks the first successful attempt at ATRP of vinyl ketones. The polymerization kinetics revealed chain growth and maintained livingness, as further evidenced by successful chain extension using ethyl acrylate. The efficient main-chain cleavability of the polymers was confirmed under UV light. While the attainment of low dispersity remains an enduring challenge, this work offers promising potential for future success.more » « less
-
Abstract The photoATRP of methyl acrylate (MA) is investigated using riboflavin (RF) and CuBr2/Me6TREN as a dual catalyst system under green LED irradiation (λ ≈ 525 nm). Both RF and CuBr2/Me6TREN enhanced oxygen tolerance, enabling effective ATRP in the presence of residual oxygen. High molar mass polymers (up toMn ≈ 129 000 g·mol−1) with low dispersity (Đ≤ 1.16) are prepared, and chain‐end fidelity is confirmed through successful chain extension. The molecular masses of the obtained polymer increased linearly with conversion and showed high initiation efficiency. Mechanistic studies by laser flash photolysis reveal that the predominant activator generation mechanism is reductive quenching of RF by Me6TREN (83%, under [CuBr2]/[Me6TREN] = 1/3 condition), supported by polymerization kinetics and thermodynamic calculations.more » « less
-
This chapter highlights the current advancements in reversible-deactivation radical polymerization (RDRP) with a specific focus on atom transfer radical polymerization (ATRP). The chapter begins with highlighting the termination pathways for acrylates radicals that were recently explored via RDRP techniques. This led to a better understanding of the catalytic radical termination (CRT) in ATRP for acrylate radicals. The designed new ligands for ATRP also enabled the suppression of CRT and increased chain end functionality. In addition, further mechanistic understandings of SARA-ATRP with Cu0 activation and comproportionation were studied using model reactions with different ligands and alkyl halide initiators. Another focus of RDRP in recent years has been on systems that are regulated by external stimuli such as light, electricity, mechanical forces and chemical redox reactions. Recent advancements made in RDRP in the field of complex polymeric architectures, organic-inorganic hybrid materials and bioconjugates have also been summarized.more » « less
-
Abstract Durable and conductive interfaces that enable chronic and high‐resolution recording of neural activity are essential for understanding and treating neurodegenerative disorders. These chronic implants require long‐term stability and small contact areas. Consequently, they are often coated with a blend of conductive polymers and are crosslinked to enhance durability despite the potentially deleterious effect of crosslinking on the mechanical and electrical properties. Here the grafting of the poly(3,4 ethylenedioxythiophene) scaffold, poly(styrenesulfonate)‐b‐poly(poly(ethylene glycol) methyl ether methacrylate block copolymer brush to gold, in a controlled and tunable manner, by surface‐initiated atom‐transfer radical polymerization (SI‐ATRP) is described. This “block‐brush” provides high volumetric capacitance (120 F cm─3), strong adhesion to the metal (4 h ultrasonication), improved surface hydrophilicity, and stability against 10 000 charge–discharge voltage sweeps on a multiarray neural electrode. In addition, the block‐brush film showed 33% improved stability against current pulsing. This approach can open numerous avenues for exploring specialized polymer brushes for bioelectronics research and application.more » « less
An official website of the United States government

