Abstract The scaling of many photonic quantum information processing systems is ultimately limited by the flux of quantum light throughout an integrated photonic circuit. Source brightness and waveguide loss set basic limits on the on-chip photon flux. While substantial progress has been made, separately, towards ultra-low loss chip-scale photonic circuits and high brightness single-photon sources, integration of these technologies has remained elusive. Here, we report the integration of a quantum emitter single-photon source with a wafer-scale, ultra-low loss silicon nitride photonic circuit. We demonstrate triggered and pure single-photon emission into a Si3N4photonic circuit with ≈ 1 dB/m propagation loss at a wavelength of ≈ 930 nm. We also observe resonance fluorescence in the strong drive regime, showing promise towards coherent control of quantum emitters. These results are a step forward towards scaled chip-integrated photonic quantum information systems in which storing, time-demultiplexing or buffering of deterministically generated single-photons is critical. 
                        more » 
                        « less   
                    
                            
                            Indistinguishable photons from an artificial atom in silicon photonics
                        
                    
    
            Abstract Silicon is the ideal material for building electronic and photonic circuits at scale. Integrated photonic quantum technologies in silicon offer a promising path to scaling by leveraging advanced semiconductor manufacturing and integration capabilities. However, the lack of deterministic quantum light sources and strong photon-photon interactions in silicon poses a challenge to scalability. In this work, we demonstrate an indistinguishable photon source in silicon photonics based on an artificial atom. We show that a G center in a silicon waveguide can generate high-purity telecom-band single photons. We perform high-resolution spectroscopy and time-delayed two-photon interference to demonstrate the indistinguishability of single photons emitted from a G center in a silicon waveguide. Our results show that artificial atoms in silicon photonics can source single photons suitable for photonic quantum networks and processors. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10547240
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We report on design, fabrication, and characterization of silicon quantum photonic integrated circuits comprising superconducting nanostripe single-photon detectors integrated with dielectric optical waveguides. In order to enhance absorption of photons by the superconducting nanostripes, the detectors are located directly on the dielectric waveguide core.more » « less
- 
            Abstract Controlling large-scale many-body quantum systems at the level of single photons and single atomic systems is a central goal in quantum information science and technology. Intensive research and development has propelled foundry-based silicon-on-insulator photonic integrated circuits to a leading platform for large-scale optical control with individual mode programmability. However, integrating atomic quantum systems with single-emitter tunability remains an open challenge. Here, we overcome this barrier through the hybrid integration of multiple InAs/InP microchiplets containing high-brightness infrared semiconductor quantum dot single photon emitters into advanced silicon-on-insulator photonic integrated circuits fabricated in a 300 mm foundry process. With this platform, we achieve single-photon emission via resonance fluorescence and scalable emission wavelength tunability. The combined control of photonic and quantum systems opens the door to programmable quantum information processors manufactured in leading semiconductor foundries.more » « less
- 
            Photonics provide an efficient way to implement quantum walks, the quantum analog of classical random walks, which demonstrate rich physics with potential applications. However, most photonic quantum walks do not involve photon interactions, which limits their potential to explore strongly correlated many-body physics of light. We propose a strongly interacting discrete-time photonic quantum walk using a network of single atom beamsplitters. We calculate output statistics of the quantum walk for the case of two photons, which reveals the strongly correlated transport of photons. Particularly, the walk can exhibit either bosonlike or fermionlike statistics which is tunable by postselecting the two-photon detection time interval. Also, the walk can sort different types of two-photon bound states into distinct pairs of output ports under certain conditions. These unique phenomena show that our quantum walk is an intriguing platform to explore strongly correlated quantum many-body states of light. Finally, we propose an experimental realization based on time-multiplexed synthetic dimensions.more » « less
- 
            Abstract Thanks to the unique molecular fingerprints in the mid-infrared spectral region, absorption spectroscopy in this regime has attracted widespread attention in recent years. Contrary to commercially available infrared spectrometers, which are limited by being bulky and cost-intensive, laboratory-on-chip infrared spectrometers can offer sensor advancements including raw sensing performance in addition to utilization such as enhanced portability. Several platforms have been proposed in the past for on-chip ethanol detection. However, selective sensing with high sensitivity at room temperature has remained a challenge. Here, we experimentally demonstrate an on-chip ethyl alcohol sensor based on a holey photonic crystal waveguide on silicon on insulator-based photonics sensing platform offering an enhanced photoabsorption thus improving sensitivity. This is achieved by designing and engineering an optical slow-light mode with a high group-index ofng = 73 and a strong localization of the modal power in analyte, enabled by the photonic crystal waveguide structure. This approach includes a codesign paradigm that uniquely features an increased effective path length traversed by the guided wave through the to-be-sensed gas analyte. This PIC-based lab-on-chip sensor is exemplary, spectrally designed to operate at the center wavelength of 3.4 μm to match the peak absorbance for ethanol. However, the slow-light enhancement concept is universal offering to cover a wide design-window and spectral ranges towards sensing a plurality of gas species. Using the holey photonic crystal waveguide, we demonstrate the capability of achieving parts per billion levels of gas detection precision. High sensitivity combined with tailorable spectral range along with a compact form-factor enables a new class of portable photonic sensor platforms when integrated with quantum cascade laser and detectors.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    