skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: GIS-based spatial approaches to refining urban catchment delineation that integrate stormwater network infrastructure
Abstract Rapid urbanization and escalating climate change impacts have heightened stormwater-related concerns (e.g., pluvial flooding) in cities. Understanding catchment dynamics and characteristics, including precise catchment mapping, is essential to accurate surface water monitoring and management. Traditionally, topography is the primary data set used to model surface water flow dynamics in undisturbed natural landscapes. However, urban systems also contain stormwater drainage infrastructure, which can alter catchment boundaries and runoff behavior. Acknowledging both natural and built environmental influences, this study introduces three GIS-based approaches to enhance urban catchment mapping: (1) Modifying DEM elevations at inlet locations; (2) Adjusting DEM elevations along pipeline paths; (3) Applying the QGRASS plug-in to systematically incorporate infrastructure data. Our evaluation using the geographical Friedman test (p > 0.05) and Dice Similarity Coefficient (DSC = 0.80) confirms the statistical and spatial consistency among the studying methods. Coupled with onsite flow direction validation, these results support the feasibility and reliability of integrating elements of nature and built infrastructure in urban catchment mapping. The refined mapping approaches explored in this study offer improved and more accurate and efficient urban drainage catchment zoning, beyond using elevation and topographic data alone. Likewise, these methods bolster predictive stormwater management at catchment scales, ultimately strengthening urban stormwater and flooding resilience.  more » « less
Award ID(s):
1828910
PAR ID:
10525485
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
https://link.springer.com/article/10.1007/s43832-024-00083-z#:~:text=Acknowledging%20both%20natural%20and%20built,plug%2Din%20to%20systematically%20incorporate
Date Published:
Journal Name:
Discover Water
Volume:
4
Issue:
1
ISSN:
2730-647X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Green infrastructure (GI) practices improve stormwater quality and reduce urban flooding, but as urban hydrology is highly controlled by its associated gray infrastructure (e.g., stormwater pipe network), GI's watershed‐scale performance depends on its siting within its associated watershed. Although many stormwater practitioners have begun considering GI's spatial configuration within a larger watershed, few approaches allow for flexible scenario exploration, which can untangle GI's interaction with gray infrastructure network and assess its effects on watershed hydrology. To address the gap in integrated gray‐green infrastructure planning, we used an exploratory model to examine gray‐green infrastructure performance using synthetic stormwater networks with varying degrees of flow path meandering, informed by analysis on stormwater networks from the Minneapolis‐St. Paul Metropolitan Area, MN, USA. Superimposed with different coverage and placements of GI (e.g., bioretention cells), these gray‐green stormwater networks are then subjected to different rainfall intensities within Environmental Protection Agency's Storm Water Management Model to simulate their hydrological benefits (e.g., peak flow reduction, flood reduction). Although only limited choices of green and gray infrastructure were explored, the results show that the gray infrastructure's spatial configuration can introduce tradeoffs between increased peak flow and increased flooding, and further interacts with GI coverage and placement to reduce peak flow and flooding at low rainfall intensity. However, as rainfall intensifies, GI ceases to reduce peak flow. For integrated gray‐green infrastructure planning, our results suggest that physical constraints of the stormwater networks and the range of rainfall intensities must be considered when implementing GI. 
    more » « less
  2. Urban stormwater management is increasingly a challenge due to land use change, aging infrastructure, and climate‐driven precipitation variability. Likewise, maintaining regulatory compliance for stormwater permits is becoming more difficult. This study develops and deploys stormwater sensors using an Internet of Things‐based monitoring framework on the University of Maryland campus, a spatially compact but land use diverse testbed, designed to support both compliance and adaptive planning. Across three campus outfalls for stormwater quantity and quality data collection, the study investigates how hyperlocal precipitation and catchment characteristics affect stormwater flow and identifies key patterns in stormwater flow and quality through continuous monitoring. Findings reveal correlations between runoff behaviors and catchment characteristics (i.e., imperviousness) and highlight site‐specific associations between runoff flow and water quality indicators (pH, turbidity, conductivity, and dissolved oxygen). These associations can be leveraged as indicators of flood and pollution risk for management and planning purposes. This study also explores the role of campus stakeholders in guiding a “smart” system design, deployment, and big data use and outlines adaptive and preventive strategies for mitigating field deployment challenges and optimizing system performance that is a practical, compliance‐oriented model for smart stormwater monitoring in complex urban settings at various scales. 
    more » « less
  3. null (Ed.)
    Green stormwater infrastructure (GSI) is increasingly used to reduce stormwater input to the subsurface stormwater network. This work investigated how GSI interacts with surface runoff and stormwater structures to affect the spatial extent and distribution of roadway flooding and subsequent effects on the performance of the traffic system using a dual-drainage model. The model simulated roadway flooding using PCSWMM (Personal Computer Stormwater Management Model) in Harvard Gulch, Denver, Colorado, and was then used in a microscopic traffic simulation using the Simulation of Urban Mobility Model (SUMO). We examined the effect of converting between 1% and 5% of directly connected impervious area (DCIA) to bioretention GSI on roadway flooding. The results showed that even for 1% of DCIA converted to GSI, the extent and mean depth of roadway flooding was reduced. Increasing GSI conversion further reduced roadway flooding depth and extent, although with diminishing returns per additional percentage of DCIA converted to GSI. Reduced roadway flooding led to increased average vehicle speeds and decreased percentage of roads impacted by flooding and total travel time. We found diminishing returns in the roadway flooding reduction per additional percentage of DCIA converted to GSI. Future work will be conducted to reduce the main limitations of insufficient data for model validation. Detailed dual-drainage modeling has the potential to better predict what GSI strategies will mitigate roadway flooding. 
    more » « less
  4. Abstract Extreme weather-related events are showing how infrastructure disruptions in hinterlands can affect cities. This paper explores the risks to city infrastructure services including transportation, electricity, communication, fuel supply, water distribution, stormwater drainage, and food supply from hinterland hazards of fire, precipitation, post-fire debris flow, smoke, and flooding. There is a large and growing body of research that describes the vulnerabilities of infrastructures to climate hazards, yet this work has not systematically acknowledged the relationships and cross-governance challenges of protecting cities from remote disruptions. An evidence base is developed through a structured literature review that identifies city infrastructure vulnerabilities to hinterland hazards. Findings highlight diverse pathways from the initial hazard to the final impact on an infrastructure, demonstrating that impacts to hinterland infrastructure assets from hazards can cascade to city infrastructure. Beyond the value of describing the impact of hinterland hazards on urban infrastructure, the identified pathways can assist in informing cross-governance mitigation strategies. It may be the case that to protect cities, local governments invest in mitigating hazards in their hinterlands and supply chains. 
    more » « less
  5. Abstract Freshwater salinization is an emerging global problem impacting safe drinking water, ecosystem health and biodiversity, infrastructure corrosion, and food production. Freshwater salinization originates from diverse anthropogenic and geologic sources including road salts, human-accelerated weathering, sewage, urban construction, fertilizer, mine drainage, resource extraction, water softeners, saltwater intrusion, and evaporative concentration of ions due to hydrologic alterations and climate change. The complex interrelationships between salt ions and chemical, biological, and geologic parameters and consequences on the natural, social, and built environment are called Freshwater Salinization Syndrome (FSS). Here, we provide a comprehensive overview of salinization issues (past, present, and future), and we investigate drivers and solutions. We analyze the expanding global magnitude and scope of FSS including its discovery in humid regions, connections to human-accelerated weathering and mobilization of ‘chemical cocktails.’ We also present data illustrating: (1) increasing trends in salt ion concentrations in some of the world’s major freshwaters, including critical drinking water supplies; (2) decreasing trends in nutrient concentrations in rivers due to regulations but increasing trends in salinization, which have been due to lack of adequate management and regulations; (3) regional trends in atmospheric deposition of salt ions and storage of salt ions in soils and groundwater, and (4) applications of specific conductance as a proxy for tracking sources and concentrations of groups of elements in freshwaters. We prioritize FSS research needs related to better understanding: (1) effects of saltwater intrusion on ecosystem processes, (2) potential health risks from groundwater contamination of home wells, (3) potential risks to clean and safe drinking water sources, (4) economic and safety impacts of infrastructure corrosion, (5) alteration of biodiversity and ecosystem functions, and (6) application of high-frequency sensors in state-of-the art monitoring and management. We evaluate management solutions using a watershed approach spanning air, land, and water to explore variations in sources, fate and transport of different salt ions (e.g.monitoring of atmospheric deposition of ions, stormwater management, groundwater remediation, and managing road runoff). We also identify tradeoffs in management approaches such as unanticipated retention and release of chemical cocktails from urban stormwater management best management practices (BMPs) and unintended consequences of alternative deicers on water quality. Overall, we show that FSS has direct and indirect effects on mobilization of diverse chemical cocktails of ions, metals, nutrients, organics, and radionuclides in freshwaters with mounting impacts. Our comprehensive review suggests what could happen if FSS were not managed into the future and evaluates strategies for reducing increasing risks to clean and safe drinking water, human health, costly infrastructure, biodiversity, and critical ecosystem services. 
    more » « less