Abstract High fracture density in fault damage zones not only reduces the elastic stiffness of rocks but may also promote time‐dependent bulk deformation through the sliding of fracture and thus alter the stress in fault zones. On comparing the damage zones of the three faults in the Chelungpu fault system encountered in the Taiwan Chelungpu fault Drilling Project (TCDP), the youngest damage zone showed pronounced sonic velocity reduction even though fracture density is the same for all three fault zones, consistent with the shorter time for velocity recovery in the youngest fault. Caliper log data showed a time‐dependent enlargement of the borehole wall at the damage zone. These damage zones record lower differential stress than the surrounding host rock, which cannot be explained by the reduced elastic stiffness in the damage zone. Stress relaxation caused by time‐dependent bulk deformation in the damage zone may be responsible for the observed low differential stress. 
                        more » 
                        « less   
                    
                            
                            Normal fault-tip damage zone structures and geometries from the Sevier fault, Utah
                        
                    
    
            Fault-tip damage zones develop in response to fault propagation and displacement and are caused by the local amplification of stresses at the fault tip. Understanding the geometry and intensity of damage zones is crucial for evaluating earthquake hazards and assessing the potentials of oil and gas production, geothermal energy, and groundwater resources. Fractures initiate as a result of stresses exceeding rock strength and propagate based on the stress field at the fault tip. We investigate the damage zone of a fault segment within the Sevier normal fault zone near Orderville, Utah, focusing on fractures that developed within the Jurassic Navajo Sandstone, the Temple Cap Formation, and the oldest beds of the Carmel Formation. Because normal faults grow laterally as slip and displacement increase, we focus on the tip zone of a fault segment where fracturing is well-exposed. We executed a series of unmanned aerial vehicle (UAV) flights to capture high-resolution imagery of inaccessible rock exposures. We use these images to construct structure-from-motion (SfM) virtual outcrop models (VOMs) that we georeference and analyze using Agisoft Metashape. We collected and analyzed fracture orientation and intensity data in the field and with VOMs. Both types of data reveal a distribution of fracture intensity that is consistent with inner and outer damage zones similar to previous studies of other fault systems. Adjacent to the tip, the inner damage zone has a higher fracture intensity on the hanging wall compared to the footwall. This high fracture intensity on the hanging wall ends 30 meters over from the fault core where the intensity of the outer damage zone of the hanging wall becomes similar to that within the inner damage zone of the footwall. Laterally, along strike of the fault tip, intense fracturing ends 60 meters to the south and all fracturing ends 350 meters from the fault tip. Our results have implications for the spatial distribution of fracturing and related permeability in similar normal fault systems. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2042114
- PAR ID:
- 10525514
- Editor(s):
- Davidson, Cam; Wirth, Karl
- Publisher / Repository:
- Keck Geology Consortium
- Date Published:
- ISSN:
- 1528-7491
- Format(s):
- Medium: X
- Location:
- Macalester College, St. Paul, MN
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Rock fracturing sets the pace for a range of geomorphic processes. While experimental studies and modeling have provided invaluable insights into the mechanisms and rates of rock fracturing as a function of stress, time, and environmental conditions, field-based observations of subaerial fracturing evolution over geologic time are scarce. To address this knowledge gap, we conducted a systematic study of fractures that developed subaerially and in situ within clasts perched on abandoned late Quaternary alluvial surfaces (ca. 0, ca. 14, and ca. 62 ka in age) in the hyperarid Dead Sea Rift Valley, Israel. Using quantitative field observations, petrographic, and scanning electron microscopy, and micron-scale laser scans of fracture surfaces we found that fractures exhibit a consistent pattern of three distinctive weathering zones: (1) an “Outer Zone,” where fracture surface morphology resembles the clast exterior; (2) an “Accumulation Zone,” where fractures are infilled by “loose” accumulated particles; and (3) an “Inner Zone” where fractures extend inward to the crack-tip and preferentially follow grain boundaries. Crack-tips are characterized as a distinct micro domain that consists of fracture-parallel microcracks, chemical alteration, and dissolution morphologies. Altogether, the laboratory results indicate chemically enhanced fracturing and infiltration of water ahead of traction-free, open crack-tips. Field measurements also revealed an increase in fracture number density over geologic time. Our results highlight new details regarding the progressive nature of mechanical weathering through geologic time and the role of moisture as a potential rate-setting factor in the fracturing that allows mechanical weathering.more » « less
- 
            null (Ed.)The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is a coordinated, multiexpedition International Ocean Discovery Program (IODP) drilling project designed to investigate fault mechanics and seismogenesis along subduction megathrusts through direct sampling, in situ measurements, and long-term monitoring in conjunction with allied laboratory and numerical modeling studies. The fundamental scientific objectives of the NanTroSEIZE drilling project include characterizing the nature of fault slip and strain accumulation, fault and wall rock composition, fault architecture, and state variables throughout the active plate boundary system. IODP Expedition 365 is part of NanTroSEIZE Stage 3, with the following primary objectives: 1. Retrieval of a temporary observatory at Site C0010 that began monitoring temperature and pore pressure within the major splay thrust fault (termed the “megasplay”) at 400 meters below seafloor in November 2010. 2. Deployment of a complex long-term borehole monitoring system (LTBMS) designed to be connected to the Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) seafloor cabled observatory network postexpedition. The LTBMS incorporates multilevel pore pressure sensing, a volumetric strainmeter, tiltmeter, geophone, broadband seismometer, accelerometer, and thermistor string. Together with an existing observatory at Integrated Ocean Drilling Program Site C0002 and a planned future installation near the trench, the Site C0010 observatory allows monitoring within and above regions of contrasting behavior of the megasplay fault and the plate boundary as a whole. These include a site above the updip edge of the locked zone (Site C0002), a shallow site in the megasplay fault zone and its footwall (Site C0010), and a site at the tip of the accretionary prism (possible future installation at Integrated Ocean Drilling Program Site C0006). Together, this suite of observatories has the potential to capture deformation spanning a wide range of timescales (e.g., seismic and microseismic activity, slow slip, and interseismic strain accumulation) across a transect from near-trench to the seismogenic zone. Site C0010 is located 3.5 km along strike to the southwest of Integrated Ocean Drilling Program Site C0004. The site was drilled and cased during Integrated Ocean Drilling Program Expedition 319, with casing screens spanning a ~20 m interval that includes the megasplay fault, and suspended with a temporary instrument package (a “SmartPlug”), which included pressure and temperature sensors. During Integrated Ocean Drilling Program Expedition 332 in late 2010, the instrument package was replaced with an upgraded sensor package (the “GeniusPlug”), which included a set of geochemical and biological experiments in addition to pressure and temperature sensors. Expedition 365 achieved its primary scientific and operational objectives, including recovery of the GeniusPlug with a >5 y record of pressure and temperature conditions within the shallow megasplay fault zone, geochemical samples, and its in situ microbial colonization experiment; and installation of the LTBMS. The pressure records from the GeniusPlug include high-quality records of formation and seafloor responses to multiple fault slip events, including the 11 March 2011 Tohoku M9 and 1 April 2016 Mie-ken Nanto-oki M6 earthquakes. The geochemical sampling coils yielded in situ pore fluids from the splay fault zone, and microorganisms were successfully cultivated from the colonization unit. The complex sensor array, in combination with the multilevel hole completion, is one of the most ambitious and sophisticated observatory installations in scientific ocean drilling (similar to that in Hole C0002G, deployed in 2010). Overall, the installation went smoothly, efficiently, and ahead of schedule. The extra time afforded by the efficient observatory deployment was used for coring in Holes C0010B–C0010E. Despite challenging hole conditions, the depth interval corresponding to the screened casing across the megasplay fault was successfully sampled in Hole C0010C, and the footwall of the megasplay was sampled in Hole C0010E, with >50% recovery for both zones. In the hanging wall of the megasplay fault (Holes C0010C and C0010D), we recovered indurated silty clay with occasional ash layers and sedimentary breccias. Mudstones show different degrees of deformation spanning from occasional fractures to intervals of densely fractured scaly claystones of up to >10 cm thickness. Sparse faulting with low displacement (usually <2 cm) is seen in core and exhibits primarily normal and, rarely, reversed sense of slip. When present, ash was entrained along fractures and faults. In Hole C0010E, the footwall to the megasplay fault was recovered. Sediments are horizontally to gently dipping and mainly comprise silt of olive-gray color. The hanging wall sediments recovered in Holes C0010C–C0010D range in age from 3.79 to 5.59 Ma and have been thrust over the younger footwall sediments in Hole C0010E, ranging in age from 1.56 to 1.67 Ma. The deposits of the underthrust sediment prism are less indurated than the hanging wall mudstones and show lamination on a centimeter scale. The material is less intensely deformed than the mudstones, and apart from occasional fracturation (some of it being drilling disturbance), evidence of structural features is absent.more » « less
- 
            null (Ed.)The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is a coordinated, multiexpedition International Ocean Discovery Program (IODP) drilling project designed to investigate fault mechanics and seismogenesis along subduction megathrusts through direct sampling, in situ measurements, and long-term monitoring in conjunction with allied laboratory and numerical modeling studies. The fundamental scientific objectives of the NanTroSEIZE drilling project include characterizing the nature of fault slip and strain accumulation, fault and wall rock composition, fault architecture, and state variables throughout the active plate boundary system. IODP Expedition 365 is part of NanTroSEIZE Stage 3, with the following primary objectives: (1) retrieval of a temporary observatory at Site C0010 that has been monitoring temperature and pore pressure within the major splay thrust fault (termed the “megasplay”) at 400 meters below seafloor since November 2010 and (2) deployment of a complex long-term borehole monitoring system (LTBMS) that will be connected to the Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) seafloor cabled observatory network postexpedition (anticipated June 2016). The LTBMS incorporates multilevel pore pressure sensing, a volumetric strainmeter, tiltmeter, geophone, broadband seismometer, accelerometer, and thermistor string. Together with an existing observatory at Integrated Ocean Drilling Program Site C0002 and a possible future installation near the trench, the Site C0010 observatory will allow monitoring within and above regions of contrasting behavior of the megasplay fault and the plate boundary as a whole. These include a site above the updip edge of the locked zone (Site C0002), a shallow site in the megasplay fault zone and its footwall (Site C0010), and a site at the tip of the accretionary prism (Integrated Ocean Drilling Program Site C0006). Together, this suite of observatories has the potential to capture deformation spanning a wide range of timescales (e.g., seismic and microseismic activity, slow slip, and interseismic strain accumulation) across a transect from near-trench to the seismogenic zone. Site C0010 is located 3.5 km along strike to the southwest of Integrated Ocean Drilling Program Site C0004. The site was drilled and cased during Integrated Ocean Drilling Program Expedition 319, with casing screens spanning a ~20 m interval that includes the megasplay fault, and suspended with a temporary instrument package (a “SmartPlug”). During Integrated Ocean Drilling Program Expedition 332 in late 2010, the instrument package was replaced with an upgraded sensor package (the “GeniusPlug”), which included pressure and temperature sensors and a set of geochemical and biological experiments. Expedition 365 achieved its primary scientific and operational objectives, including recovery of the GeniusPlug with a >5 y record of pressure and temperature conditions within the shallow megasplay fault zone, geochemical samples, and its in situ microbial colonization experiment; and installation of the LTBMS. The pressure records from the GeniusPlug include high-quality records of formation and seafloor responses to multiple fault slip events, including the 11 March 2011 Tohoku M9 and 1 April 2016 Mie-ken Nanto-oki M6 earthquakes. The geochemical sampling coils yielded in situ pore fluids from the splay fault zone, and microbes were successfully cultivated from the colonization unit. The complex sensor array, in combination with the multilevel hole completion, is one of the most ambitious and sophisticated observatory installations in scientific ocean drilling (similar to that in Hole C0002G, deployed in 2010). Overall, the installation went smoothly, efficiently, and ahead of schedule. The extra time afforded by the efficient observatory deployment was used for coring in Holes C0010B–C0010E. Despite challenging hole conditions, the depth interval corresponding to the screened casing across the megasplay fault was successfully sampled in Hole C0010C, and the footwall of the megasplay was sampled in Hole C0010E, with >50% recovery for both zones. In the hanging wall of the megasplay fault (Holes C0010C and C0010D), we recovered indurated silty clay with occasional ash layers and sedimentary breccias. Some of the deposits show burrows and zones of diagenetic alteration/colored patches. Mudstones show different degrees of deformation spanning from occasional fractures to intervals of densely fractured scaly claystones of up to >10 cm thickness. Sparse faulting with low displacement (usually <2 cm) is seen in core and exhibits primarily normal and, rarely, reversed sense of slip. When present, ash was entrained along fractures and faults. On one occasion, a ~10 cm thick ash layer was found, which showed a fining-downward gradation into a mottled zone with clasts of the underlying silty claystones. In Hole C0010E, the footwall to the megasplay fault was recovered. Sediments are horizontally to gently dipping and mainly comprise silt of olive-gray color. The deposits of the underthrust sediment prism are less indurated than the hanging wall mudstones and show lamination on a centimeter scale. The material is less intensely deformed than the mudstones, and apart from occasional fracturation (some of it being drilling disturbance), evidence of structural features is absent.more » « less
- 
            Abstract Fault‐damage zones comprise multiscale fracture networks that may slip dynamically and interact with the main fault during earthquake rupture. Using 3D dynamic rupture simulations and scale‐dependent fracture energy, we examine dynamic interactions of more than 800 intersecting multiscale fractures surrounding a listric fault, emulating a major listric fault and its damage zone. We investigate 10 distinct orientations of maximum horizontal stress, probing the conditions necessary for sustained slip within the fracture network or activating the main fault. Additionally, we assess the feasibility of nucleating dynamic rupture earthquake cascades from a distant fracture and investigate the sensitivity of fracture network cascading rupture to the effective normal stress level. We model either pure cascades or main fault rupture with limited off‐fault slip. We find that cascading ruptures within the fracture network are dynamically feasible under certain conditions, including: (a) the fracture energy scales with fracture and fault size, (b) favorable relative pre‐stress of fractures within the ambient stress field, and (c) close proximity of fractures. We find that cascading rupture within the fracture network discourages rupture on the main fault. Our simulations suggest that fractures with favorable relative pre‐stress, embedded within a fault damage zone, may lead to cascading earthquake rupture that shadows main fault slip. We find that such off‐fault events may reach moment magnitudes up toMw ≈ 5.5, comparable to magnitudes that can be otherwise hosted by the main fault. Our findings offer insights into physical processes governing cascading earthquake dynamic rupture within multiscale fracture networks.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    