skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Leveraging Machine-Generated Rationales to Facilitate Social Meaning Detection in Conversations
We present a generalizable classification approach that leverages Large Language Models (LLMs) to facilitate the detection of implicitly encoded social meaning in conversations. We design a multi-faceted prompt to extract a textual explanation of the reasoning that connects visible cues to underlying social meanings. These extracted explanations or rationales serve as augmentations to the conversational text to facilitate dialogue understanding and transfer. Our empirical results over 2,340 experimental settings demonstrate the significant positive impact of adding these rationales. Our findings hold true for in-domain classification, zero-shot, and few-shot domain transfer for two different social meaning detection tasks, each spanning two different corpora.  more » « less
Award ID(s):
2100401 2241670
PAR ID:
10544820
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Association for Computational Linguistics
Date Published:
Page Range / eLocation ID:
6901 to 6929
Format(s):
Medium: X
Location:
Bangkok, Thailand
Sponsoring Org:
National Science Foundation
More Like this
  1. Toxic content detection is crucial for online services to remove inappropriate content that violates community standards. To automate the detection process, prior works have proposed varieties of machine learning (ML) approaches to train Language Models (LMs) for toxic content detection. However, both their accuracy and transferability across datasets are limited. Recently, Large Language Models (LLMs) have shown promise in toxic content detection due to their superior zero-shot and few-shot in-context learning ability as well as broad transferability on ML tasks.However, efficiently designing prompts for LLMs remains challenging. Moreover, the high run-time cost of LLMs may hinder their deployments in production. To address these challenges, in this work, we propose BD-LLM, a novel and efficient approach to bootstrapping and distilling LLMs for toxic content detection. Specifically, we design a novel prompting method named Decision-Tree-of-Thought (DToT) to bootstrap LLMs' detection performance and extract high-quality rationales. DToT can automatically select more fine-grained context to re-prompt LLMs when their responses lack confidence. Additionally, we use the rationales extracted via DToT to fine-tune student LMs. Our experimental results on various datasets demonstrate that DToT can improve the accuracy of LLMs by up to 4.6%. Furthermore, student LMs fine-tuned with rationales extracted via DToT outperform baselines on all datasets with up to 16.9% accuracy improvement, while being more than 60x smaller than conventional LLMs. Finally, we observe that student LMs fine-tuned with rationales exhibit better cross-dataset transferability. 
    more » « less
  2. Few-shot classification aims to recognize novel categories with only few labeled images in each class. Existing metric-based few-shot classification algorithms predict categories by comparing the feature embeddings of query images with those from a few labeled images (support examples) using a learned metric function. While promising performance has been demonstrated, these methods often fail to generalize to unseen domains due to large discrepancy of the feature distribution across domains. In this work, we address the problem of few-shot classification under domain shifts for metric-based methods. Our core idea is to use feature-wise transformation layers for augmenting the image features using affine transforms to simulate various feature distributions under different domains in the training stage. To capture variations of the feature distributions under different domains, we further apply a learning-to-learn approach to search for the hyper-parameters of the feature-wise transformation layers. We conduct extensive experiments and ablation studies under the domain generalization setting using five few-shot classification datasets: mini-ImageNet, CUB, Cars, Places, and Plantae. Experimental results demonstrate that the proposed feature-wise transformation layer is applicable to various metric-based models, and provides consistent improvements on the few-shot classification performance under domain shift. 
    more » « less
  3. Multi-view data are extensively accessible nowadays thanks to various types of features, different view-points and sensors which tend to facilitate better representation in many key applications. This survey covers the topic of robust multi-view data representation, centered around several major visual applications. First of all, we formulate a unified learning framework which is able to model most existing multi-view learning and domain adaptation in this line. Following this, we conduct a comprehensive discussion across these two problems by reviewing the algorithms along these two topics, including multi-view clustering, multi-view classification, zero-shot learning, and domain adaption. We further present more practical challenges in multi-view data analysis. Finally, we discuss future research including incomplete, unbalance, large-scale multi-view learning. This would benefit AI community from literature review to future direction. 
    more » « less
  4. This paper introduces a novel neuro-symbolic architecture for relation classification (RC) that combines rule-based methods with contemporary deep learning techniques. This approach capitalizes on the strengths of both paradigms: the adaptability of rule-based systems and the generalization power of neural networks. Our architecture consists of two components: a declarative rule-based model for transparent classification and a neural component to enhance rule generalizability through semantic text matching. Notably, our semantic matcher is trained in an unsupervised domain-agnostic way, solely with synthetic data. Further, these components are loosely coupled, allowing for rule modifications without retraining the semantic matcher. In our evaluation, we focused on two few-shot relation classification datasets: Few-Shot TACRED and a Few-Shot version of NYT29. We show that our proposed method outperforms previous state-of-the-art models in three out of four settings, despite not seeing any human-annotated training data. Further, we show that our approach remains modular and pliable, i.e., the corresponding rules can be locally modified to improve the overall model. Human interventions to the rules for the TACRED relation org:parents boost the performance on that relation by as much as 26% relative improvement, without negatively impacting the other relations, and without retraining the semantic matching component. 
    more » « less
  5. Graph rationales are representative subgraph structures that best explain and support the graph neural network (GNN) predictions. Graph rationalization involves the joint identification of these subgraphs during GNN training, resulting in improved interpretability and generalization. GNN is widely used for node-level tasks such as paper classification and graph-level tasks such as molecular property prediction. However, on both levels, little attention has been given to GNN rationalization and the lack of training examples makes it difficult to identify the optimal graph rationales. In this work, we address the problem by proposing a unified data augmentation framework with two novel operations on environment subgraphs to rationalize GNN prediction. We define the environment subgraph as the remaining subgraph after rationale identification and separation. The framework efficiently performs rationale–environment separation in therepresentation spacefor a node’s neighborhood graph or a graph’s complete structure to avoid the high complexity of explicit graph decoding and encoding. We conduct experiments on 17 datasets spanning node classification, graph classification, and graph regression. Results demonstrate that our framework is effective and efficient in rationalizing and enhancing GNNs for different levels of tasks on graphs. 
    more » « less