skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamics of PM2.5 and network activity during extreme pollution events
Abstract In an era where air pollution poses a significant threat to both the environment and public health, we present a network-based approach to unravel the dynamics of extreme pollution events. Leveraging data from 741 monitoring stations in the contiguous United States, we have created dynamic networks using time-lagged correlations of hourly particulate matter (PM2.5) data. The established spatial correlation networks reveal significant PM2.5anomalies during the 2020 and 2021 wildfire seasons, demonstrating the approach’s sensitivity to detecting regional pollution phenomena. The methodology also provides insights into smoke transport and network response, highlighting the persistence of air quality issues beyond visible smoke periods. Additionally, we explored meteorological variables’ impacts on network connectivity. This study enhances understanding of spatiotemporal pollution patterns, positioning spatial correlation networks as valuable tools for environmental monitoring and public health surveillance.  more » « less
Award ID(s):
2125326
PAR ID:
10525635
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Climate and Atmospheric Science
Volume:
7
Issue:
1
ISSN:
2397-3722
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Wildfires cause elevated air pollution that can be detrimental to human health. However, health impact assessments associated with emissions from wildfire events are subject to uncertainty arising from different sources. Here, we quantify and compare major uncertainties in mortality and morbidity outcomes of exposure to fine particulate matter (PM2.5) pollution estimated for a series of wildfires in the Southeastern U.S. We present an approach to compare uncertainty in estimated health impacts specifically due to two driving factors, wildfire‐related smoke PM2.5fields and variability in concentration‐response parameters from epidemiologic studies of ambient and smoke PM2.5. This analysis, focused on the 2016 Southeastern wildfires, suggests that emissions from these fires had public health consequences in North Carolina. Using several methods based on publicly available monitor data and atmospheric models to represent wildfire‐attributable PM2.5, we estimate impacts on several health outcomes and quantify associated uncertainty. Multiple concentration‐response parameters derived from studies of ambient and wildfire‐specific PM2.5are used to assess health‐related uncertainty. Results show large variability and uncertainty in wildfire impact estimates, with comparable uncertainties due to the smoke pollution fields and health response parameters for some outcomes, but substantially larger health‐related uncertainty for several outcomes. Consideration of these uncertainties can support efforts to improve estimates of wildfire impacts and inform fire‐related decision‐making. 
    more » « less
  2. Abstract One of the primary challenges associated with evaluating smoke models is the availability of observations. The limited density of traditional air quality monitoring networks makes evaluating wildfire smoke transport challenging, particularly over regions where smoke plumes exhibit significant spatiotemporal variability. In this study, we analyzed smoke dispersion for the 2018 Pole Creek and Bald Mountain Fires, which were located in central Utah. Smoke simulations were generated using a coupled fire‐atmosphere model, which simultaneously renders fire growth, fire emissions, plume rise, smoke dispersion, and fire‐atmosphere interactions. Smoke simulations were evaluated using PM2.5observations from publicly accessible fixed sites and a semicontinuously running mobile platform. Calibrated measurements of PM2.5made by low‐cost sensors from the Air Quality and yoU (AQ&U) network were within 10% of values reported at nearby air quality sites that used Federal Equivalent Methods. Furthermore, results from this study show that low‐cost sensor networks and mobile measurements are useful for characterizing smoke plumes while also serving as an invaluable data set for evaluating smoke transport models. Finally, coupled fire‐atmosphere model simulations were able to capture the spatiotemporal variability of wildfire smoke in complex terrain for an isolated smoke event caused by local fires. Results here suggest that resolving local drainage flow could be critical for simulating smoke transport in regions of significant topographic relief. 
    more » « less
  3. Introduction:Traditional methods to estimate exposure to PM2.5(particulate matter with less than 2.5 µm in diameter) have typically relied on limited regulatory monitors and do not consider human mobility and travel. However, the limited spatial coverage of regulatory monitors and the lack of consideration of mobility limit the ability to capture actual air pollution exposure. Methods:This study aims to improve traditional exposure assessment methods for PM2.5by incorporating the measurements from a low-cost sensor network (PurpleAir) and regulatory monitors, an automated machine learning modeling framework, and big human mobility data. We develop a monthly-aggregated hourly land use regression (LUR) model based on automated machine learning (AutoML) and assess the model performance across eight metropolitan areas within the US. Results:Our results show that integrating low-cost sensor with regulatory monitor measurements generally improves the AutoML-LUR model accuracy and produces higher spatial variation in PM2.5concentration maps compared to using regulatory monitor measurements alone. Feature importance analysis shows factors highly correlated with PM2.5concentrations, including satellite aerosol optical depth, meteorological variables, vegetation, and land use. In addition, we incorporate human mobility data on exposure estimates regarding where people visit to identify spatiotemporal hotspots of places with higher risks of exposure, emphasizing the need to consider both visitor numbers and PM2.5concentrations when developing exposure reduction strategies. Discussion:This research provides important insights for further public health studies on air pollution by comprehensively assessing the performance of AutoML-LUR models and incorporating human mobility into considering human exposure to air pollution. 
    more » « less
  4. Abstract Despite improvements in ambient air quality in the US in recent decades, many people still experience unhealthy levels of pollution. At present, national‐level alert‐day identification relies predominately on surface monitor networks and forecasters. Satellite‐based estimates of surface air quality have rapidly advanced and have the capability to inform exposure‐reducing actions to protect public health. At present, we lack a robust framework to quantify public health benefits of these advances in applications of satellite‐based atmospheric composition data. Here, we assess possible health benefits of using geostationary satellite data, over polar orbiting satellite data, for identifying particulate air quality alert days (24hr PM2.5 > 35 μg m−3) in 2020. We find the more extensive spatiotemporal coverage of geostationary satellite data leads to a 60% increase in identification of person‐alerts (alert days × population) in 2020 over polar‐orbiting satellite data. We apply pre‐existing estimates of PM2.5exposure reduction by individual behavior modification and find these additional person‐alerts may lead to 1,200 (800–1,500) or 54% more averted PM2.5‐attributable premature deaths per year, if geostationary, instead of polar orbiting, satellite data alone are used to identify alert days. These health benefits have an associated economic value of 13 (8.8–17) billion dollars ($2019) per year. Our results highlight one of many potential applications of atmospheric composition data from geostationary satellites for improving public health. Identifying these applications has important implications for guiding use of current satellite data and planning future geostationary satellite missions. 
    more » « less
  5. Abstract AimTwo important environmental hazards for nocturnally migrating birds are artificial light at night (ALAN) and air pollution, with ambient fine particulate matter (PM2.5) considered to be especially harmful. Nocturnally migrating birds are attracted to ALAN during seasonal migration, which could increase exposure to PM2.5. Here, we examine PM2.5concentrations and PM2.5trends and the spatial correlation between ALAN and PM2.5within the geographical ranges of the world’s nocturnally migrating birds. LocationGlobal. Time period1998–2018. Major taxa studiedNocturnally migrating birds. MethodsWe intersected a global database of annual mean PM2.5concentrations over a 21‐year period (1998–2018) with the geographical ranges (breeding, non‐breeding and regions of passage) of 225 nocturnally migrating bird species in three migration flyways (Americas,n = 143; Africa–Europe,n = 36; and East Asia–Australia,n = 46). For each species, we estimated PM2.5concentrations and trends and measured the correlation between ALAN and PM2.5, which we summarized by season and flyway. ResultsCorrelations between ALAN and PM2.5were significantly positive across all seasons and flyways. The East Asia–Australia flyway had the strongest ALAN–PM2.5correlations within regions of passage, the highest PM2.5concentrations across all three seasons and the strongest positive PM2.5trends on the non‐breeding grounds and within regions of passage. The Americas flyway had the strongest negative air pollution trends on the non‐breeding grounds and within regions of passage. The breeding grounds had similarly negative air pollution trends within the three flyways. Main conclusionsThe combined threats of ALAN and air pollution are greatest and likely to be increasing within the East Asia–Australia flyway and lowest and likely to be decreasing within the Americas and Africa–Europe flyways. Reversing PM2.5trends in the East Asia–Australia flyway and maintaining negative PM2.5trends in the Americas and Africa–Europe flyways while reducing ALAN levels would likely be beneficial for the nocturnally migrating bird populations in each region. 
    more » « less