ABSTRACT AimHalting widespread biodiversity loss will require detailed information on species' trends and the habitat conditions correlated with population declines. However, constraints on conventional monitoring programs and commonplace approaches for trend estimation can make it difficult to obtain such information across species' ranges. Here, we demonstrate how recent developments in machine learning and model interpretation, combined with data sources derived from participatory science, enable landscape‐scale inferences on the habitat correlates of population trends across broad spatial extents. LocationWorldwide, with a case study in the western United States. MethodsWe used interpretable machine learning to understand the relationships between land cover and spatially explicit bird population trends. Using a case study with three passerine birds in the western U.S. and spatially explicit trends derived from eBird data, we explore the potential impacts of simulated land cover modification while evaluating potential co‐benefits among species. ResultsOur analysis revealed complex, non‐linear relationships between land cover variables and species' population trends as well as substantial interspecific variation in those relationships. Areas with the most positive impacts from a simulated land cover modification overlapped for two species, but these changes had little effect on the third species. Main ConclusionsThis framework can help conservation practitioners identify important relationships between species trends and habitat while also highlighting areas where potential modifications to the landscape could bring the biggest benefits. The analysis is transferable to hundreds of species worldwide with spatially explicit trend estimates, allowing inference across multiple species at scales that are tractable for management to combat species declines.
more »
« less
Guidelines for the use of spatially varying coefficients in species distribution models
Abstract AimSpecies distribution models (SDMs) are increasingly applied across macroscales using detection‐nondetection data. These models typically assume that a single set of regression coefficients can adequately describe species–environment relationships and/or population trends. However, such relationships often show nonlinear and/or spatially varying patterns that arise from complex interactions with abiotic and biotic processes that operate at different scales. Spatially varying coefficient (SVC) models can readily account for variability in the effects of environmental covariates. Yet, their use in ecology is relatively scarce due to gaps in understanding the inferential benefits that SVC models can provide compared to simpler frameworks. InnovationHere we demonstrate the inferential benefits of SVC SDMs, with a particular focus on how this approach can be used to generate and test ecological hypotheses regarding the drivers of spatial variability in population trends and species–environment relationships. We illustrate the inferential benefits of SVC SDMs with simulations and two case studies: one that assesses spatially varying trends of 51 forest bird species in the eastern United States over two decades and a second that evaluates spatial variability in the effects of five decades of land cover change on grasshopper sparrow (Ammodramus savannarum) occurrence across the continental United States. Main conclusionsWe found strong support for SVC SDMs compared to simpler alternatives in both empirical case studies. Factors operating at fine spatial scales, accounted for by the SVCs, were the primary divers of spatial variability in forest bird occurrence trends. Additionally, SVCs revealed complex species–habitat relationships with grassland and cropland area for grasshopper sparrow, providing nuanced insights into how future land use change may shape its distribution. These applications display the utility of SVC SDMs to help reveal the environmental factors that drive species distributions across both local and broad scales. We conclude by discussing the potential applications of SVC SDMs in ecology and conservation.
more »
« less
- PAR ID:
- 10491894
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Global Ecology and Biogeography
- Volume:
- 33
- Issue:
- 4
- ISSN:
- 1466-822X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract AimSpecies distribution models (SDMs) that integrate presence‐only and presence–absence data offer a promising avenue to improve information on species' geographic distributions. The use of such ‘integrated SDMs’ on a species range‐wide extent has been constrained by the often limited presence–absence data and by the heterogeneous sampling of the presence‐only data. Here, we evaluate integrated SDMs for studying species ranges with a novel expert range map‐based evaluation. We build new understanding about how integrated SDMs address issues of estimation accuracy and data deficiency and thereby offer advantages over traditional SDMs. LocationSouth and Central America. Time Period1979–2017. Major Taxa StudiedHummingbirds. MethodsWe build integrated SDMs by linking two observation models – one for each data type – to the same underlying spatial process. We validate SDMs with two schemes: (i) cross‐validation with presence–absence data and (ii) comparison with respect to the species' whole range as defined with IUCN range maps. We also compare models relative to the estimated response curves and compute the association between the benefit of the data integration and the number of presence records in each data set. ResultsThe integrated SDM accounting for the spatially varying sampling intensity of the presence‐only data was one of the top performing models in both model validation schemes. Presence‐only data alleviated overly large niche estimates, and data integration was beneficial compared to modelling solely presence‐only data for species which had few presence points when predicting the species' whole range. On the community level, integrated models improved the species richness prediction. Main ConclusionsIntegrated SDMs combining presence‐only and presence–absence data are successfully able to borrow strengths from both data types and offer improved predictions of species' ranges. Integrated SDMs can potentially alleviate the impacts of taxonomically and geographically uneven sampling and to leverage the detailed sampling information in presence–absence data.more » « less
-
Dainton, John (Ed.)Improving models of species' distributions is essential for conservation, especially in light of global change. Species distribution models (SDMs) often rely on mean environmental conditions, yet species distributions are also a function of environmental heterogeneity and filtering acting at multiple spatial scales. Geodiversity, which we define as the variation of abiotic features and processes of Earth's entire geosphere (inclusive of climate), has potential to improve SDMs and conservation assessments, as they capture multiple abiotic dimensions of species niches, however they have not been sufficiently tested in SDMs. We tested a range of geodiversity variables computed at varying scales using climate and elevation data. We compared predictive performance of MaxEnt SDMs generated using CHELSA bioclimatic variables to those also including geodiversity variables for 31 mammalian species in Colombia. Results show the spatial grain of geodiversity variables affects SDM performance. Some variables consistently exhibited an increasing or decreasing trend in variable importance with spatial grain, showing slight scale-dependence and indicating that some geodiversity variables are more relevant at particular scales for some species. Incorporating geodiversity variables into SDMs, and doing so at the appropriate spatial scales, enhances the ability to model species-environment relationships, thereby contributing to the conservation and management of biodiversity. This article is part of the Theo Murphy meeting issue ‘Geodiversity for science and society’.more » « less
-
ABSTRACT AimBiological diversity is shaped by processes occurring at different spatial and temporal scales. However, the direct influence of the spatial and temporal scale on patterns of occupancy is still understudied. Today, occupancy is often negatively correlated with species richness, but it is unknown whether this relationship is scale dependent and consistent through time. Here, we use datasets of contemporary and paleontological communities to explore the occupancy‐richness relationship across space and time, examining how scale influences this relationship. LocationVarying spatial extents with global coverage. TimeVaries from 7 mya to 2021 CE. Taxaforaminifera, mammals, birds, fish, and plants. MethodsWe gathered datasets spanning different spatial, temporal, and taxonomic extents. We binned each dataset into distinct time periods and spatially subsampled them into regional pools of varying sizes. We calculated regional occupancy and richness for each pool, measuring the strength of the relationship between the two. Using linear mixed models, we related the occupancy‐richness relationship to the size of the regional pools, overall species richness, and climatic changes through time. ResultsWe observed nearly ubiquitous negative occupancy‐richness relationships across taxa, spatial scale, and time. The size of the regional pools and time bins had no consistent effects on the strength of the relationship, but the strength of the negative relationship varied substantially among taxa, with foraminifera and North American pollen showing weaker relationships than mammals and birds. Changes in this relationship through time were not driven by climatic perturbations but by the species richness observed across all regional pools. ConclusionsPatterns of regional richness and occupancy are consistently negatively related and independent of spatial and temporal scale and of direct climatic changes. However, differences in the ecology of species (e.g., dispersal ability) and changes in biodiversity and community composition through time may cause fluctuations in the strength of the occupancy‐richness relationship.more » « less
-
Abstract Species distribution models (SDMs) that rely on regional‐scale environmental variables will play a key role in forecasting species occurrence in the face of climate change. However, in the Anthropocene, a number of local‐scale anthropogenic variables, including wildfire history, land‐use change, invasive species, and ecological restoration practices can override regional‐scale variables to drive patterns of species distribution. Incorporating these human‐induced factors into SDMs remains a major research challenge, in part because spatial variability in these factors occurs at fine scales, rendering prediction over regional extents problematic. Here, we used big sagebrush (Artemisia tridentataNutt.) as a model species to explore whether including human‐induced factors improves the fit of the SDM. We applied a Bayesian hurdle spatial approach using 21,753 data points of field‐sampled vegetation obtained from the LANDFIRE program to model sagebrush occurrence and cover by incorporating fire history metrics and restoration treatments from 1980 to 2015 throughout the Great Basin of North America. Models including fire attributes and restoration treatments performed better than those including only climate and topographic variables. Number of fires and fire occurrence had the strongest relative effects on big sagebrush occurrence and cover, respectively. The models predicted that the probability of big sagebrush occurrence decreases by 1.2% (95% CI: −6.9%, 0.6%) when one fire occurs and cover decreases by 44.7% (95% CI: −47.9%, −41.3%) if at least one fire occurred over the 36 year period of record. Restoration practices increased the probability of big sagebrush occurrence but had minimal effect on cover. Our results demonstrate the potential value of including disturbance and land management along with climate in models to predict species distributions. As an increasing number of datasets representing land‐use history become available, we anticipate that our modeling framework will have broad relevance across a range of biomes and species.more » « less
An official website of the United States government
