This content will become publicly available on April 1, 2025
- Award ID(s):
- 1931211
- NSF-PAR ID:
- 10525716
- Publisher / Repository:
- Cell Press
- Date Published:
- Journal Name:
- Trends in Biochemical Sciences
- Edition / Version:
- In Press
- ISSN:
- 0968-0004
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Outer membrane proteins (OMPs) must exist as an unfolded ensemble while interacting with a chaperone network in the periplasm of Gram-negative bacteria. Here, we developed a method to model unfolded OMP (uOMP) conformational ensembles using the experimental properties of two well-studied OMPs. The overall sizes and shapes of the unfolded ensembles in the absence of a denaturant were experimentally defined by measuring the sedimentation coefficient as a function of urea concentration. We used these data to model a full range of unfolded conformations by parameterizing a targeted coarse-grained simulation protocol. The ensemble members were further refined by short molecular dynamics simulations to reflect proper torsion angles. The final conformational ensembles have polymer properties different from unfolded soluble and intrinsically disordered proteins and reveal inherent differences in the unfolded states that necessitate further investigation. Building these uOMP ensembles advances the understanding of OMP biogenesis and provides essential information for interpreting structures of uOMP-chaperone complexes.more » « less
-
The outer membrane of Gram-negative bacteria acts as an additional diffusion barrier for solutes and nutrients. It is perforated by outer membrane proteins (OMPs) that function most often as diffusion pores, but sometimes also as parts of larger cellular transport complexes, structural components of the cell wall, or even as enzymes. These OMPs often have large loops that protrude into the extracellular environment, which have promise for biotechnological applications and as therapeutic targets. Thus, understanding how modifications to these loops affect OMP stability and folding is critical for their efficient application. In this work, the small outer membrane protein OmpX was used as a model system to quantify the effects of loop insertions on OMP folding and stability. The insertions were varied according to both hydrophobicity and size, and their effects were determined by assaying folding into detergent micelles in vitro by SDS-PAGE and in vivo by isolating the outer membrane of cells expressing the constructs. The different insertions were also examined in molecular dynamics simulations to resolve how they affect OmpX dynamics in its native outer membrane. The results indicate that folding of OMPs is affected by both the insert length and by its hydrophobic character. Small insertions sometimes even improved the folding efficiency of OmpX, while large hydrophilic inserts reduced it. All the constructs that were found to fold in vitro could also do so in their native environment. One construct that could not fold in vitro was transported to the OM in vivo , but remained unfolded. Our results will help to improve the design and efficiency of recombinant OMPs used for surface display.more » « less
-
Abstract The outer membrane (OM) of Gram-negative bacteria such as
Escherichia coli is an asymmetric bilayer with the glycolipid lipopolysaccharide (LPS) in the outer leaflet and glycerophospholipids in the inner. Nearly all integral OM proteins (OMPs) have a characteristic β-barrel fold and are assembled in the OM by the BAM complex, which contains one essential β-barrel protein (BamA), one essential lipoprotein (BamD), and three non-essential lipoproteins (BamBCE). A gain-of-function mutation inbamA enables survival in the absence of BamD, showing that the essential function of this protein is regulatory. Here, we demonstrate that the global reduction in OMPs caused by BamD loss weakens the OM, altering cell shape and causing OM rupture in spent medium. To fill the void created by OMP loss, phospholipids (PLs) flip into the outer leaflet. Under these conditions, mechanisms that remove PLs from the outer leaflet create tension between the OM leaflets, which contributes to membrane rupture. Rupture is prevented by suppressor mutations that release the tension by halting PL removal from the outer leaflet. However, these suppressors do not restore OM stiffness or normal cell shape, revealing a possible connection between OM stiffness and cell shape. -
Abstract SurA, Skp, FkpA, and DegP constitute a chaperone network that ensures biogenesis of outer membrane proteins (OMPs) in Gram‐negative bacteria. Both Skp and FkpA are holdases that prevent the self‐aggregation of unfolded OMPs, whereas SurA accelerates folding and DegP is a protease. None of these chaperones is essential, and we address here how functional plasticity is manifested in nine known null strains. Using a comprehensive computational model of this network termed OMPBioM, our results suggest that a threshold level of steady state holdase occupancy by chaperones is required, but the cell is agnostic to the specific holdase molecule fulfilling this function. In addition to its foldase activity, SurA moonlights as a holdase when there is no expression of Skp and FkpA. We further interrogate the importance of chaperone–client complex lifetime by conducting simulations using lifetime values for Skp complexes that range in length by six orders of magnitude. This analysis suggests that transient occupancy of durations much shorter than the
Escherichia coli doubling time is required. We suggest that fleeting chaperone occupancy facilitates rapid sampling of the periplasmic conditions, which ensures that the cell can be adept at responding to environmental changes. Finally, we calculated the network effects of adding multivalency by computing populations that include two Skp trimers per unfolded OMP. We observe only modest perturbations to the system. Overall, this quantitative framework of chaperone–protein interactions in the periplasm demonstrates robust plasticity due to its dynamic binding and unbinding behavior. -
Abstract Outer membrane protein (OMP) biogenesis in gram‐negative bacteria is managed by a network of periplasmic chaperones that includes SurA, Skp, and FkpA. These chaperones bind unfolded OMPs (uOMPs) in dynamic conformational ensembles to suppress aggregation, facilitate diffusion across the periplasm, and enhance folding. FkpA primarily responds to heat‐shock stress, but its mechanism is comparatively understudied. To determine FkpA chaperone function in the context of OMP folding, we monitored the folding of three OMPs and found that FkpA, unlike other periplasmic chaperones, increases the folded yield but decreases the folding rate of OMPs. The results indicate that FkpA behaves as a chaperone and not as a folding catalyst to influence the OMP folding trajectory. Consistent with the folding assay results, FkpA binds all three uOMPs as determined by sedimentation velocity (SV) and photo‐crosslinking experiments. We determine the binding affinity between FkpA and uOmpA171by globally fitting SV titrations and find it to be intermediate between the known affinities of Skp and SurA for uOMP clients. Notably, complex formation steeply depends on the urea concentration, suggesting an extensive binding interface. Initial characterizations of the complex using photo‐crosslinking indicate that the binding interface spans the entire FkpA molecule. In contrast to prior findings, folding and binding experiments performed using subdomain constructs of FkpA demonstrate that the full‐length chaperone is required for full activity. Together these results support that FkpA has a distinct and direct effect on OMP folding that it achieves by utilizing an extensive chaperone‐client interface to tightly bind clients.