skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Beyond sex and aggression: testosterone rapidly matches behavioural responses to social context and tries to predict the future
Although androgens are widely studied in the context of aggression, androgenic influences on prosocial behaviours have been less explored. We examined testosterone's (T) influence on prosocial and aggressive responses in a positively valenced social context (interacting with a pairbond partner) and a negatively valenced context (interacting with an intruder) in socially monogamous Mongolian gerbils. T increased and decreased prosocial responses in the same individuals towards a pairbond partner and an intruder, respectively, both within 30 min, but did not affect aggression. T also had persistent effects on prosocial behaviour; males in which T initially increased prosocial responses towards a partner continued to exhibit elevated prosocial responses towards an intruder male days later until a second T injection rapidly eliminated those responses. Thus, T surges can rapidly match behaviour to current social context, as well as prime animals for positive social interactions in the future. Neuroanatomically, T rapidly increased hypothalamic oxytocin, but not vasopressin, cellular responses during interactions with a partner. Together, our results indicate that T can facilitate and inhibit prosocial behaviours depending on social context, that it can influence prosocial responses across rapid and prolonged time scales, and that it affects oxytocin signalling mechanisms that could mediate its context-dependent behavioural influences.  more » « less
Award ID(s):
2032610
PAR ID:
10525793
Author(s) / Creator(s):
; ;
Publisher / Repository:
Royal Society Publishinhg
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
289
Issue:
1976
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A growing body of literature suggests that testosterone (T) rapidly modulates behavior in a context-specific manner. However, the timescales in which T can rapidly mediate distinct types of behavior, such as pro- vs. anti- social responses, has not been studied. Thus, here we examined acute T influences on social behavior in male and female Mongolian gerbils in nonreproductive contexts. Females and males received an injection of either saline or T and were first tested in a social interaction test with a same-sex, familiar peer. 5 min after the peer interaction, subjects then underwent a resident-intruder test with a novel, same-sex conspecific. After another 5 min, gerbils were tested in a novel object task to test context-specificity (i.e., social vs. nonsocial) of T effects on behavior. Within 1 h, males and females injected with T exhibited more huddling with a peer but more active avoidance of and less time spent in proximity of an intruder than did animals injected with saline. T effects on behavior were specific to social contexts, such that T did not influence investigation of the novel object. Together these findings show that T rapidly promotes pro-social responses to a familiar peer and anti-social responses to an intruder in the same individuals within 5 min of experiencing these disparate social contexts. This demonstrates that T rapidly facilitates behavior in a context-appropriate manner outside the context of reproduction and reveals that rapid effects of T on behavior are not restricted to males. 
    more » « less
  2. Abstract The formation of enduring relationships dramatically influences future behavior, promoting affiliation between familiar individuals. How such attachments are encoded to elicit and reinforce specific social behaviors in distinct ethological contexts remains unknown. Signaling via the oxytocin receptor (Oxtr) in the nucleus accumbens (NAc) facilitates social reward as well as pair bond formation between mates in socially monogamous prairie voles1–9. How Oxtr function influences activity in the NAc during pair bonding to promote affiliative behavior with partners and rejection of other potential mates has not been determined. Using longitudinalin vivofiber photometry in wild-type prairie voles and those lacking Oxtr, we demonstrate that Oxtr function sex-specifically regulates pair bonding behaviors and associated activity in the NAc. Oxtr function influences prosocial behavior in females in a state-dependent manner. Females lacking Oxtr demonstrate reduced prosocial behaviors and lower activity in the NAc during initial chemosensory investigation of novel males. Upon pair bonding, affiliative behavior with partners and neural activity in the NAc during these interactions increase, but these changes do not require Oxtr function. Conversely, males lacking Oxtr display increased prosocial investigation of novel females. Using the altered patterns of behavior and activity in the NAc of males lacking Oxtr during their first interactions with a female, we can predict their future preference for a partner or stranger days later. These results demonstrate that Oxtr function sex-specifically influences the early development of pair bonds by modulating prosociality and the neural processing of sensory cues and social interactions with novel individuals, unmasking underlying sex differences in the neural pathways regulating the formation of long-term relationships. 
    more » « less
  3. null (Ed.)
    Abstract An animal's social behaviour both influences and changes in response to its parasites. Here we consider these bidirectional links between host social behaviours and parasite infection, both those that occur from ecological vs evolutionary processes. First, we review how social behaviours of individuals and groups influence ecological patterns of parasite transmission. We then discuss how parasite infection, in turn, can alter host social interactions by changing the behaviour of both infected and uninfected individuals. Together, these ecological feedbacks between social behaviour and parasite infection can result in important epidemiological consequences. Next, we consider the ways in which host social behaviours evolve in response to parasites, highlighting constraints that arise from the need for hosts to maintain benefits of sociality while minimizing fitness costs of parasites. Finally, we consider how host social behaviours shape the population genetic structure of parasites and the evolution of key parasite traits, such as virulence. Overall, these bidirectional relationships between host social behaviours and parasites are an important yet often underappreciated component of population-level disease dynamics and host–parasite coevolution. 
    more » « less
  4. Abstract Competitive interactions often occur in series; therefore animals may respond to social challenges in ways that prepare them for success in future conflict. Changes in the production of the steroid hormone testosterone (T) are thought to mediate phenotypic responses to competition, but research over the past few decades has yielded mixed results, leading to several potential explanations as to why T does not always elevate following a social challenge. Here, we measured T levels in tree swallows (Tachycineta bicolor), a system in which females compete for limited nesting cavities and female aggression is at least partially mediated by T. We experimentally induced social challenges in two ways: (1) using decoys to simulate territorial intrusions and (2) removing subsets of nesting cavities to increase competition among displaced and territory-holding females. Critically, these experiments occurred pre-laying, when females are physiologically capable of rapidly increasing circulating T levels. However, despite marked aggression in both experiments, T did not elevate following real or simulated social challenges, and in some cases, socially challenged females had lower T levels than controls. Likewise, the degree of aggression was negatively correlated with T levels following a simulated territorial intrusion. Though not in line with the idea that social challenges prompt T elevation in preparation for future challenges, these patterns nevertheless connect T to territorial aggression in females. Coupled with past work showing that T promotes aggression, these results suggest that T may act rapidly to allow animals to adaptively respond to the urgent demands of a competitive event. 
    more » « less
  5. Nagarajan, SS; Turner, JA (Ed.)
    The context surrounding vocal communication can have a strong influence on how vocal signals are perceived. The serotonergic system is well-positioned for modulating the perception of communication signals according to context, because serotonergic neurons are responsive to social context, influence social behavior, and innervate auditory regions. Animals like lab mice can be excellent models for exploring how serotonin affects the primary neural systems involved in vocal perception, including within central auditory regions like the inferior colliculus (IC). Within the IC, serotonergic activity reflects not only the presence of a conspecific, but also the valence of a given social interaction. To assess whether serotonin can influence the perception of vocal signals in male mice, we manipulated serotonin systemically with an injection of its precursor 5-HTP, and locally in the IC with an infusion of fenfluramine, a serotonin reuptake blocker. Mice then participated in a behavioral assay in which males suppress their ultrasonic vocalizations (USVs) in response to the playback of female broadband vocalizations (BBVs), used in defensive aggression by females when interacting with males. Both 5-HTP and fenfluramine increased the suppression of USVs during BBV playback relative to controls. 5-HTP additionally decreased the baseline production of a specific type of USV and male investigation, but neither drug treatment strongly affected male digging or grooming. These findings show that serotonin modifies behavioral responses to vocal signals in mice, in part by acting in auditory brain regions, and suggest that mouse vocal behavior can serve as a useful model for exploring the mechanisms of context in human communication. 
    more » « less