Abstract BackgroundSelf-regulated learning (SRL) strategies can be domain specific. However, it remains unclear whether this specificity extends to different subtopics within a single subject domain. In this study, we collected data from 210 college students engaged in a computer-based learning environment to examine the heterogeneous manifestations of learning behaviors across four distinct subtopics in introductory statistics. Further, we explore how the time spent engaging in metacognitive strategies correlated with learning gain in those subtopics. ResultsBy employing two different analytical approaches that combine data-driven learning analytics (i.e., sequential pattern mining in this case), and theory-informed methods (i.e., coherence analysis), we discovered significant variability in the frequency of learning patterns that are potentially associated with SRL-relevant strategies across four subtopics. In a subtopic related to calculations, engagement in coherent quizzes (i.e., a type of metacognitive strategy) was found to be significantly less related to learning gains compared to other subtopics. Additionally, we found that students with different levels of prior knowledge and learning gains demonstrated varying degrees of engagement in learning patterns in an SRL context. ConclusionThe findings imply that the use—and the effectiveness—of learning patterns that are potentially associated with SRL-relevant strategies varies not only across contexts and domains, but even across different subtopics within a single subject. This underscores the importance of personalized, context-aware SRL training interventions in computer-based learning environments, which could significantly enhance learning outcomes by addressing the heterogeneous relationships between SRL activities and outcomes. Further, we suggest theoretical implications of subtopic-specific heterogeneity within the context of various SRL models. Understanding SRL heterogeneity enhances these theories, offering more nuanced insights into learners’ metacognitive strategies across different subtopics. 
                        more » 
                        « less   
                    
                            
                            Relations between undergraduates’ self-regulated learning skill mastery during digital training and biology performance
                        
                    
    
            Abstract Undergraduate STEM lecture courses enroll hundreds who must master declarative, conceptual, and applied learning objectives. To support them, instructors have turned to active learning designs that require students to engage inself-regulated learning(SRL). Undergraduates struggle with SRL, and universities provide courses, workshops, and digital training to scaffold SRL skill development and enactment. We examined two theory-aligned designs of digital skill trainings that scaffold SRL and how students’ demonstration of metacognitive knowledge of learning skills predicted exam performance in biology courses where training took place. In Study 1, students’ (n = 49) responses to training activities were scored for quality and summed by training topic and level of understanding. Behavioral and environmental regulation knowledge predicted midterm and final exam grades; knowledge of SRL processes did not. Declarative and conceptual levels of skill-mastery predicted exam performance; application-level knowledge did not. When modeled by topic at each level of understanding, declarative knowledge of behavioral and environmental regulation and conceptual knowledge of cognitive strategies predicted final exam performance. In Study 2 (n = 62), knowledge demonstrated during a redesigned video-based multimedia version of behavioral and environmental regulation again predicted biology exam performance. Across studies, performance on training activities designed in alignment with skill-training models predicted course performances and predictions were sustained in a redesign prioritizing learning efficiency. Training learners’ SRL skills –and specifically cognitive strategies and environmental regulation– benefited their later biology course performances across studies, which demonstrate the value of providing brief, digital activities to develop learning skills. Ongoing refinement to materials designed to develop metacognitive processing and learners’ ability to apply skills in new contexts can increase benefits. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10467984
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Metacognition and Learning
- Volume:
- 18
- Issue:
- 3
- ISSN:
- 1556-1623
- Format(s):
- Medium: X Size: p. 711-747
- Size(s):
- p. 711-747
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            IntroductionSelf-regulated learning (SRL), or learners’ ability to monitor and change their own cognitive, affective, metacognitive, and motivational processes, encompasses several operations that should be deployed during learning including Searching, Monitoring, Assembling, Rehearsing, and Translating (SMART). Scaffolds are needed within GBLEs to both increase learning outcomes and promote the accurate and efficient use of SRL SMART operations. This study aims to examine how restricted agency (i.e., control over one’s actions) can be used to scaffold learners’ SMART operations as they learn about microbiology with Crystal Island, a game-based learning environment. MethodsUndergraduate students (N = 94) were randomly assigned to one of two conditions: (1) Full Agency, where participants were able to make their own decisions about which actions they could take; and (2) Partial Agency, where participants were required to follow a pre-defined path that dictated the order in which buildings were visited, restricting one’s control. As participants played Crystal Island, participants’ multimodal data (i.e., log files, eye tracking) were collected to identify instances where participants deployed SMART operations. ResultsResults from this study support restricted agency as a successful scaffold of both learning outcomes and SRL SMART operations, where learners who were scaffolded demonstrated more efficient and accurate use of SMART operations. DiscussionThis study provides implications for future scaffolds to better support SRL SMART operations during learning and discussions for future directions for future studies scaffolding SRL during game-based learning.more » « less
- 
            This works seeks to develop and assess a retention intervention that addresses the key drivers of attrition and learns from existing interventions for engineering students. The resulting intervention addresses key competencies for the major and profession, and also addresses a gap in current approaches: the need to synergistically support students’ social-cognitive disposition with respect to attrition by training them in social-cognitive skills and strategies adapted from the theories of Sense of Belonging (SOB) and Self-Regulation of Learning (SRL). Because the degree of skills and strategies around SRL and SOB needed to make the largest impact to retention is unknown, four versions of the intervention are proposed: A base intervention which provokes students to think about their learning and belonging, an intervention augmented with specific training in effective SRL, an intervention augmented with specific training in SOB; and an intervention augmented with training in both effective SRL and SOB. An overarching research design plans the offering and assessment of each version of the intervention, including a numerical longitudinal analysis of retention at the end of the study, with the ultimate goal of identifying which version of the intervention has the largest positive impact to retention and other key metrics. After a general description of the intervention as a while, the focus was reoriented to the base version of the intervention. The detailed design was presented along with the assessment methods for short-term effectiveness and the preliminary results for its first offering in Fall 2022. Overall, students found the topics covered in the intervention to be helpful and used many of the skills and strategies from the intervention in other major courses. The impact of the intervention on performance in major courses taken alongside the intervention and their persistence rate in the major for another semester improved significantly for one major course but were inconclusive for a second major course. Recommendations were made to refine the materials provided to students and several of the activities in the base intervention; and the formative assessment tool.more » « less
- 
            Metacognition is the understanding of your own knowledge including what knowledge you do not have and what knowledge you do have. This includes knowledge of strategies and regulation of one’s own cognition. Studying metacognition is important because higher-order thinking is commonly used, and problem-solving skills are positively correlated with metacognition. A positive previous disposition to metacognition can improve problem-solving skills. Metacognition is a key skill in design and manufacturing, as teams of engineers must solve complex problems. Moreover, metacognition increases individual and team performance and can lead to more original ideas. This study discusses the assessment of metacognitive skills in engineering students by having the students participate in hands-on and virtual reality activities related to design and manufacturing. The study is guided by two research questions: (1) do the proposed activities affect students’ metacognition in terms of monitoring, awareness, planning, self-checking, or strategy selection, and (2) are there other components of metacognition that are affected by the design and manufacturing activities? The hypothesis is that the participation in the proposed activities will improve problem-solving skills and metacognitive awareness of the engineering students. A total of 34 undergraduate students participated in the study. Of these, 32 were male and 2 were female students. All students stated that they were interested in pursuing a career in engineering. The students were divided into two groups with the first group being the initial pilot run of the data. In this first group there were 24 students, in the second group there were 10 students. The groups’ demographics were nearly identical to each other. Analysis of the collected data indicated that problem-solving skills contribute to metacognitive skills and may develop first in students before larger metacognitive constructs of awareness, monitoring, planning, self-checking, and strategy selection. Based on this, we recommend that the problem-solving skills and expertise in solving engineering problems should be developed in students before other skills emerge or can be measured. While we are sure that the students who participated in our study have awareness as well as the other metacognitive skills in reading, writing, science, and math, they are still developing in relation to engineering problems.more » « less
- 
            null (Ed.)We present in this paper the results of a randomized control trial experiment that compared the effectiveness of two instructional strategies that scaffold learners' code comprehension processes: eliciting Free Self-Explanation and a Socratic Method. Code comprehension, i.e., understanding source code, is a critical skill for both learners and professionals. Improving learners' code comprehension skills should result in improved learning which in turn should help with retention in intro-to-programming courses which are notorious for suffering from very high attrition rates due to the complexity of programming topics. To this end, the reported experiment is meant to explore the effectiveness of various strategies to elicit self-explanation as a way to improve comprehension and learning during complex code comprehension and learning activities in intro-to-programming courses. The experiment showed pre-/post-test learning gains of 30% (M = 0.30, SD = 0.47) for the Free Self-Explanation condition and learning gains of 59% (M = 0.59,SD = 0.39) for the Socratic method. Furthermore, we investigated the behavior of the two strategies as a function of students' prior knowledge which was measured using learners' pretest score. For the Free Self-Explanation condition, there was no significant difference in mean learning gains for low vs. high knowledge students. The magnitude of the difference in performance (mean difference= 0.02,95% CI: -0.34 to 0.39) was very small (eta squared = 0.006). Likewise, the Socratic method showed no significant difference in mean learning gains between low vs. high performing students. The magnitude of the performance difference (mean difference =-0.24,95% CI: -0.534 to 0.03) was large (eta squared = 0.10). These findings suggest that eliciting self-explanations can be used as an effective strategy and that guided self-explanations as in the Socratic method condition is more effective at inducing learning gains.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
