skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: North Atlantic meltwater during Heinrich Stadial 1 drives wetter climate with more atmospheric rivers in western North America.
Atmospheric rivers (ARs) bring concentrated rainfall and flooding to the western United States (US) and are hypothesized to have supported sustained hydroclimatic changes in the past. However, their ephemeral nature makes it challenging to document ARs in climate models and estimate their contribution to hydroclimate changes recorded by time-averaged paleoclimate archives. We present new climate model simulations of Heinrich Stadial 1 (HS1; 16,000 years before the present), an interval characterized by widespread wetness in the western US, that demonstrate increased AR frequency and winter precipitation sourced from the southeastern North Pacific. These changes are amplified with freshwater fluxes into the North Atlantic, indicating that North Atlantic cooling associated with weakened Atlantic Meridional Overturning Circulation (AMOC) is a key driver of HS1 climate in this region. As recent observations suggest potential weakening of AMOC, our identified connection between North Atlantic climate and northeast Pacific AR activity has implications for future western US hydroclimate.  more » « less
Award ID(s):
2202883
PAR ID:
10525822
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Science Advances
Date Published:
Journal Name:
Science advances
Volume:
9
ISSN:
2375-2548
Page Range / eLocation ID:
eadj2225
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Atmospheric rivers (ARs) bring concentrated rainfall and flooding to the western United States (US) and are hypothesized to have supported sustained hydroclimatic changes in the past. However, their ephemeral nature makes it challenging to document ARs in climate models and estimate their contribution to hydroclimate changes recorded by time-averaged paleoclimate archives. We present new climate model simulations of Heinrich Stadial 1 (HS1; 16,000 years before the present), an interval characterized by widespread wetness in the western US, that demonstrate increased AR frequency and winter precipitation sourced from the southeastern North Pacific. These changes are amplified with freshwater fluxes into the North Atlantic, indicating that North Atlantic cooling associated with weakened Atlantic Meridional Overturning Circulation (AMOC) is a key driver of HS1 climate in this region. As recent observations suggest potential weakening of AMOC, our identified connection between North Atlantic climate and northeast Pacific AR activity has implications for future western US hydroclimate. 
    more » « less
  2. Abstract Model‐based projections of hydroclimate in western North America (wNA) remain uncertain and depend on how Pacific sea surface temperature (SST) will evolve in the future. However, whether climate models can accurately capture Pacific SST changes and its relationship with wNA hydroclimate in the future remains elusive. Here, we use a synthesis of proxy records and idealized model simulations to elucidate the spatiotemporal evolution and the forcings that drive wNA hydroclimate and Pacific SST during the Holocene (past ∼11,000 years), when the boundary conditions are different from the present. We find that wNA hydroclimate and Pacific SST co‐evolved during the Holocene, where wNA became wetter while the eastern equatorial Pacific and the north Pacific became warmer toward the present. We attribute changes in wNA hydroclimate to precession and carbon dioxide changes, but we are unable to attribute Pacific SST changes unambiguously to any forcing. Our analysis offers a framework to understand the relationship between wNA hydroclimate and Pacific SST and provides an empirical assessment of how these two regions are related over time. 
    more » « less
  3. Abstract During the mid‐Holocene (MH: ∼6,000 years Before Present) and Last Interglacial LIG (LIG: ∼129,000–116,000 years Before Present) differences in the seasonal and latitudinal distribution of insolation drove Northern Hemisphere high‐latitude warming comparable to that projected for the end of the 21st century in low emissions scenarios. Paleoclimate proxy records point to distinct but regionally variable hydroclimatic changes during these past warm intervals. However, model simulations have generally disagreed on North American regional moisture patterns during the MH and LIG. To investigate how closely the latest generation of models associated with the Paleoclimate Model Intercomparison Project (PMIP4) reproduces proxy‐inferred moisture patterns during recent warm periods, we compare hydroclimate output from 17 PMIP4 models with newly updated compilations of moisture‐sensitive North American proxy records during the MH and LIG. Agreement is lower for the MH, with models producing wet anomalies across the western United States (US) where most proxies indicate increased aridity relative to the preindustrial period. The models that agree most closely with the LIG proxy compilation display relative wetness in the eastern US and Alaska, and dryness in the northwest and central US. An assessment of atmospheric dynamics using an ensemble of the three LIG simulations that best agree with the proxies suggests that weaker winter North Pacific pressure gradients and steeper summer North Pacific and Atlantic gradients drive LIG precipitation patterns. Our updated compilations and proxy‐model comparisons offer a tool for benchmarking climate models and their performance in simulating climate states that are warmer than present. 
    more » « less
  4. Abstract Proxy reconstructions and model simulations of precipitation during Earth's glacial periods suggest that the locations and mechanisms of atmospheric moisture transport have changed considerably during Earth's past. We investigate the hydroclimate of the Last Glacial Maximum (LGM) using simulations with the Community Earth System Model, with a focus on the extratropics and the influence of atmospheric rivers (ARs), a key driver of modern‐day moisture transport globally. Mean and extreme precipitation increase significantly over southwestern Patagonia, Iberia, and southwestern North America—mid‐latitude regions affected by ARs in the modern climate—despite overall decreases elsewhere. In each, the associated moisture transport changes are different, with increased transport and AR activity mainly occurring in the North Atlantic. The overall LGM response is dominated by the response to ice sheets, with other forcings causing additional cooling and drying over the extratropics and a strong decrease of moisture transport over the subpolar North Atlantic. 
    more » « less
  5. Abstract Variations in the Atlantic Meridional Overturning Circulation (AMOC) redistribute heat and nutrients, causing pronounced anomalies of temperature and nutrient concentrations in the subsurface ocean. However, exactly how millennial‐scale deglacial AMOC variability influenced the subsurface is debated, and the role of other deglacial forcings of subsurface temperature change is unclear. Here, we present a new deglacial temperature reconstruction, which, with published records, helps assess competing hypotheses for deglacial warming in the upper tropical North Atlantic. Our record provides new evidence of regional subsurface warming in the western tropical North Atlantic within the core of modern Antarctic Intermediate Water (AAIW) during Heinrich Stadial 1 (HS1), an early deglacial interval of iceberg discharge into the North Atlantic. Our results are consistent with model simulations that suggest subsurface heat accumulates in the northern high‐latitude convection regions and along the upper AMOC return path when the AMOC weakens, and with warming due to rising greenhouse gases. Warming of AAIW may have also contributed to warming in the tropics at modern AAIW depths during late HS1. Nutrient andreconstructions from the same site suggest a link between AMOC intensity and the northward extent of AAIW in the northern tropics across the deglaciation and on millennial time scales. However, the timing of the initial deglacial increase in AAIW to the northern tropics is ambiguous. Deglacial trends and variability ofin the upper North Atlantic have likely biased temperature reconstructions based on the elemental composition of calcitic benthic foraminifera. 
    more » « less