skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coupled social and ecological change drove the historical extinction of the California grizzly bear ( Ursus arctos californicus )
Large carnivores (order Carnivora) are among the world's most threatened mammals due to a confluence of ecological and social forces that have unfolded over centuries. Combining specimens from natural history collections with documents from archival records, we reconstructed the factors surrounding the extinction of the California grizzly bear (Ursus arctos californicus), a once-abundant brown bear subspecies last seen in 1924. Historical documents portrayed California grizzlies as massive hypercarnivores that endangered public safety. Yet, morphological measurements on skulls and teeth generate smaller body size estimates in alignment with extant North American grizzly populations (approx. 200 kg). Stable isotope analysis (δ13C,δ15N) of pelts and bones (n= 57) revealed that grizzlies derived less than 10% of their nutrition from terrestrial animal sources and were therefore largely herbivorous for millennia prior to the first European arrival in this region in 1542. Later colonial land uses, beginning in 1769 with the Mission era, led grizzlies to moderately increase animal protein consumption (up to 26% of diet), but grizzlies still consumed far less livestock than otherwise claimed by contemporary accounts. We show how human activities can provoke short-term behavioural shifts, such as heightened levels of carnivory, that in turn can lead to exaggerated predation narratives and incentivize persecution, triggering rapid loss of an otherwise widespread and ecologically flexible animal.  more » « less
Award ID(s):
1844513
PAR ID:
10525884
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
The Royal Society
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
291
Issue:
2014
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Sedimentary δ15N (δ15Nsed) has been widely applied as a proxy for water column denitrification. When combined with additional productivity proxies, it provides insights into the driving forces behind long‐term changes in water column oxygenation. High‐resolution (~2 years) δ15Nsedand productivity proxy records (total organic carbon [TOC], Si/Ti, and Ca/Ti) from Santa Barbara Basin, California, were generated from a well‐dated Kasten core (SPR0901‐03KC). These records reveal the relationship between Southern California upwelling and oxygenation over the past 2,000 years. Inconsistencies between Si/Ti (coastal upwelling proxy) and TOC (total export productivity proxy) suggest wind curl upwelling influenced Southern California primary productivity, especially during intervals of weak coastal upwelling. Coherence between δ15Nsed, TOC, and drought indicators supports a local control of δ15Nsedby atmospheric circulation, as persistent northerly winds associated with an intensified North Pacific High pressure cell lead to enhanced coastal upwelling. In the northeast Pacific, δ15Nsedis used as a water mass tracer of denitrification signals transported north from the eastern tropical North Pacific (ETNP) via the California Undercurrent. A 1,200‐year δ15Nsedrecord from the Pescadero slope, Gulf of California, lies between denitrifying subsurface waters in the ETNP and Southern California. During the Medieval Climate Anomaly, coherence between Pescadero and Santa Barbara Basin δ15Nsedindicates connections between ETNP and Southern California on centennial timescales. Yet an out‐of‐phase relationship occurred when the Aleutian Low was anomalously strong during the Little Ice Age. We suggest intensified nutrient‐rich subarctic water advection might have transported high‐15N nitrate into Southern California when the California Undercurrent and ETNP denitrification weakened. 
    more » « less
  2. Yoder, Anne (Ed.)
    Abstract Over the past 15 years, the D-statistic, a four-taxon test for organismal admixture (hybridization, or introgression) which incorporates single nucleotide polymorphism data with allelic patterns ABBA and BABA, has seen considerable use. This statistic seeks to discern significant deviation from either a given species tree assumption, or from the balanced incomplete lineage sorting that could otherwise defy this species tree. However, while the D-statistic can successfully discriminate admixture from incomplete lineage sorting, it is not a simple matter to determine the directionality of admixture using only four-leaf tree models. As such, methods have been developed that use 5 leaves to evaluate admixture. Among these, the DFOIL method, which tests allelic patterns on the “symmetric” tree S = (((1,2),(3,4)),5), succeeds in finding admixture direction for many five-taxon examples. However, DFOIL does not make full use of all symmetry, nor can DFOIL function properly when ancient samples are included because of the reliance on singleton patterns (such as BAAAA and ABAAA). Here, we take inspiration from DFOIL to develop a new and completely general family of five-leaf admixture tests, dubbed Δ-statistics, that can either incorporate or exclude the singleton allelic patterns depending on individual taxon and age sampling choices. We describe two new shapes that are also fully testable, namely the “asymmetric” tree A = ((((1,2),3),4),5) and the “quasisymmetric” tree Q = (((1,2),3),(4,5)), which can considerably supplement the “symmetric“ S = (((1,2),(3,4)),5) model used by DFOIL. We demonstrate the consistency of Δ-statistics under various simulated scenarios, and provide empirical examples using data from black, brown and polar bears, the latter also including two ancient polar bear samples from previous studies. Recently DFOIL and one of these ancient samples was used to argue for a dominant polar bear → brown bear introgression direction. However, we find, using both this ancient polar bear and our own, that by far the strongest signal using both DFOIL and Δ-statistics on tree S is actually bidirectional gene flow of indistinguishable direction. Further experiments on trees A and Q instead highlight what were likely two phases of admixture: one with stronger brown bear → polar bear introgression in ancient times, and a more recent phase with predominant polar bear → brown bear directionality. Code and documentation available at https://github.com/KalleLeppala/Delta-statistics. 
    more » « less
  3. Methane seeps harbor uncharacterized animal–microbe symbioses with unique nutritional strategies. Three undescribed sea spider species (family Ammotheidae; genusSericosura) endemic to methane seeps were found along the eastern Pacific margin, from California to Alaska, hosting diverse methane- and methanol-oxidizing bacteria on their exoskeleton. δ13C tissue isotope values of in situ specimens corroborated methane assimilation (−45‰, on average). Live animal incubations with13C-labeled methane and methanol, followed by nanoscale secondary ion mass spectrometry, confirmed that carbon derived from both compounds was actively incorporated into the tissues within five days. Methano- and methylotrophs of the bacterial families Methylomonadaceae, Methylophagaceae and Methylophilaceae were abundant, based on environmental metagenomics and 16S rRNA sequencing, and fluorescence and electron microscopy confirmed dense epibiont aggregations on the sea spider exoskeleton. Egg sacs carried by the males hosted identical microbes suggesting vertical transmission. We propose that these sea spiders farm and feed on methanotrophic and methylotrophic bacteria, expanding the realm of animals known to harness C1 compounds as a carbon source. These findings advance our understanding of the biology of an understudied animal lineage, unlocking some of the unique nutritional links between the microbial and faunal food webs in the oceans. 
    more » « less
  4. Abstract Neogloboquadrina pachydermais the dominant species of planktonic foraminifera found in polar waters and is therefore invaluable for paleoceanographic studies of the high latitudes. However, the geochemistry of this species is complicated due to the development of a thick calcite crust in its final growth stage and at greater depths within the water column. We analyzed the in situ Mg/Ca and δ18O in discrete calcite zones using laser ablation‐inductively coupled plasma‐mass spectrometry, electron probe microanalysis, and secondary ion mass spectrometry within modernN. pachydermashells from the highly dynamic Fram Strait and the seasonally isothermal/isohaline Irminger Sea. Here we compare shell geochemistry to the measured temperature, salinity, and δ18Oswin which the shells calcified to better understand the controls onN. pachydermageochemical heterogeneity. We present a relationship between Mg/Ca and temperature inN. pachydermalamellar calcite that is significantly different than published equations for shells that contained both crust and lamellar calcite. We also document highly variable secondary ion mass spectrometry δ18O results (up to a 3.3‰ range in single shells) on plankton tow samples which we hypothesize is due to the granular texture of shell walls. Finally, we document that the δ18O of the crust and lamellar calcite ofN. pachydermafrom an isothermal/isohaline environment are indistinguishable from each other, indicating that shifts inN. pachydermaδ18O are primarily controlled by changes in environmental temperature and/or salinity rather than differences in the sensitivities of the two calcite types to environmental conditions. 
    more » « less
  5. Summary While plant δ15N values have been applied to understand nitrogen (N) dynamics, uncertainties regarding intraspecific and temporal variability currently limit their application. We used a 28 yr record of δ15N values from two Mojave Desert populations ofEncelia farinosato clarify sources of population‐level variability.We leveraged > 3500 foliar δ15N observations collected alongside structural, physiological, and climatic data to identify plant and environmental contributors to δ15N values. Additional sampling of soils, roots, stems, and leaves enabled assessment of the distribution of soil N content and δ15N, intra‐plant fractionations, and relationships between soil and plant δ15N values.We observed extensive within‐population variability in foliar δ15N values and found plant age and foliar %N to be the strongest predictors of individual δ15N values. There were consistent differences between root, stem, and leaf δ15N values (spanningc. 3‰), but plant and bulk soil δ15N values were unrelated.Plant‐level variables played a strong role in influencing foliar δ15N values, and interannual relationships between climate and δ15N values were counter to previously recognized spatial patterns. This long‐term record provides insights regarding the interpretation of δ15N values that were not available from previous large‐scale syntheses, broadly enabling more effective application of foliar δ15N values. 
    more » « less