skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global rate optimality of integral curve estimators in high order tensor models: Supplemental material
В статье приведены доказательства результатов, сформулированных в работе C. Banerjee, L. Sakhanenko, D. C. Zhu Global rate optimality of integral curve estimators in high order tensor models, опубликованной в журнале Теория вероятностей и ее применения, 2023, 68(2), с. 95-115.  more » « less
Award ID(s):
2111251
PAR ID:
10526015
Author(s) / Creator(s):
; ;
Publisher / Repository:
SIAM
Date Published:
Journal Name:
Теория вероятностей и ее применения
Volume:
69
Issue:
3
ISSN:
0040-361X
Page Range / eLocation ID:
511 to 535
Subject(s) / Keyword(s):
global minimax lower bound semi-parametric estimator HARDI
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Reaction of ( p -tol 3 P) 2 PtCl 2 and Me 3 Sn(CC) 2 SiMe 3 (1 : 1/THF/reflux) gives monosubstituted trans -Cl( p -tol 3 P) 2 Pt(CC) 2 SiMe 3 (63%), which with wet n -Bu 4 N + F − yields trans -Cl( p -tol 3 P) 2 Pt(CC) 2 H ( 2 , 96%). Hay oxidative homocoupling (O 2 /CuCl/TMEDA) gives all- trans -Cl( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 Cl ( 3 , 68%). Reaction of 3 and Me 3 Sn(CC) 2 SiMe 3 (1 : 1/rt) affords monosubstituted all- trans -Cl( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 (CC) 2 SiMe 3 (46%), which is converted by a similar desilylation/homocoupling sequence to all- trans -Cl[( p -tol 3 P) 2 Pt(CC) 4 ] 3 Pt(P p -tol 3 ) 2 Cl ( 7 ; 79%). Reaction of ( p -tol 3 P) 2 PtCl 2 and excess H(CC) 2 SiMe 3 (HNEt 2 /cat. CuI) gives trans -Me 3 Si(CC) 2 Pt(P p -tol 3 ) 2 (CC) 2 SiMe 3 (78%), which with wet n -Bu 4 N + F − affords trans -H(CC) 2 Pt(P p -tol 3 ) 2 (CC) 2 H (96%). Hay oxidative cross coupling with 2 (1 : 4) gives all- trans -Cl[( p -tol 3 P) 2 Pt(CC) 4 ] 2 Pt(P p -tol 3 ) 2 Cl ( 10 , 36%) along with homocoupling product 3 (33%). Reaction of 3 and Me 3 Sn(CC) 2 SiMe 3 (1 : 2/rt) yields all- trans -Me 3 Si(CC) 2 ( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 (CC) 2 SiMe 3 ( 17 , 77%), which with wet n -Bu 4 N + F − gives all- trans -H(CC) 2 ( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 (CC) 2 H (96%). Reaction of 3 and excess Me 3 P gives all- trans -Cl(Me 3 P) 2 Pt(CC) 4 Pt(PMe 3 ) 2 Cl ( 4 , 86%). A model reaction of trans -( p -tol)( p -tol 3 P) 2 PtCl and KSAc yields trans -( p -tol)( p -tol 3 P) 2 PtSAc ( 12 , 75%). Similar reactions of 3 , 7 , 10 , and 4 give all- trans -AcS[(R 3 P) 2 Pt(CC) 4 ] n Pt(PR 3 ) 2 SAc (76–91%). The crystal structures of 3 , 17 , and 12 are determined. The first exhibits a chlorine–chlorine distance of 17.42 Å; those in 10 and 7 are estimated as 30.3 Å and 43.1 Å. 
    more » « less
  2. Reactions of {(C 6 F 5 )Pt[S(CH 2 CH 2 -) 2 ](μ-Cl)} 2 and R 3 P yield the bis(phosphine) species trans -(C 6 F 5 )(R 3 P) 2 PtCl [R = Et ( Pt'Cl ), Ph, ( p -CF 3 C 6 H 4 ) 3 P; 88-81 %]. Additions of Pt'Cl and H(C≡C) n H ( n = 1, 2; HNEt 2 , 20 mol % CuI) give Pt'C 2 H (37 %, plus Pt'I , 16 %) and Pt'C 4 H (88 %). Homocoupling of Pt'C 4 H under Hay conditions (O 2 , CuCl, TMEDA, acetone) gives Pt'C 8 Pt' (85 %), but Pt'C 2 H affords only traces of Pt'C 4 Pt' . However, condensation of Pt'C 4 H and Pt'Cl (HNEt 2 , 20 mol % CuI) yields Pt'C 4 Pt' (97 %). Hay heterocouplings of Pt'C 4 H or trans -( p -tol)(Ph 3 P) 2 Pt(C≡C) 2 H ( Pt*C 4 H ) and excess HC≡CSiEt 3 give Pt'C 6 SiEt 3 (76 %) or Pt*C 6 SiEt 3 (89 %). The latter and wet n -Bu 4 N + F - react to yield labile Pt*C 6 H (60 %). Hay homocouplings of Pt*C 4 H and Pt*C 6 H give Pt*C 8 Pt* (64 %) and Pt*C 12 Pt* (64 %). Reaction of trans -(C 6 F 5 )( p -tol 3 P) 2 PtCl ( PtCl ) and HC≡CH (HNEt 2 , 20 mol % CuI) yields only traces of PtC 2 H . However, an analogous reaction with HC≡CSiMe 3 gives PtC 2 SiMe 3 (75 %), which upon treatment with silica yields PtC 2 H (77 %). An analogous coupling of trans -(C 6 F 5 )(Ph 3 P) 2 PtCl with H(C≡C) 2 H gives trans -(C 6 F 5 )(Ph 3 P) 2 Pt(C≡C) 2 H (34 %). Advantages and disadvantages of the various trans -(Ar)(R 3 P) 2 Pt end-groups are analyzed. 
    more » « less
  3. A COF-based catalyst was synthesized to activate C–H bonds for C–C/C–N coupling via hydrogen atom transfer. The catalyst can be easily recycled, allowing downstream modification of the product to realize C–H to C–N/C–S/C–O transformations. 
    more » « less
  4. Abstract Litter decomposition is a key ecological process that determines carbon (C) and nutrient cycling in terrestrial ecosystems. The initial concentrations of C and nutrients in litter play a critical role in this process, yet the global patterns of litter initial concentrations of C, nitrogen (N) and phosphorus (P) are poorly understood.We employed machine learning with a global database to quantitatively assess the global patterns and drivers of leaf litter initial C, N and P concentrations, as well as their returning amounts (i.e. amounts returned to soils).The medians of litter C, N and P concentrations were 46.7, 1.1, and 0.1%, respectively, and the medians of litter C, N and P returning amounts were 1.436, 0.038 and 0.004 Mg ha−1 year−1, respectively. Soil and climate emerged as the key predictors of leaf litter C, N and P concentrations. Predicted global maps showed that leaf litter N and P concentrations decreased with latitude, while C concentration exhibited an opposite pattern. Additionally, the returning amounts of leaf litter C, N and P all declined from the equator to the poles in both hemispheres.Synthesis: Our results provide a quantitative assessment of the global concentrations and returning amounts of leaf litter C, N and P, which showed new light on the role of leaf litter in global C and nutrients cycling. 
    more » « less
  5. Summary Increasing atmospheric CO2is changing the dynamics of tropical savanna vegetation. C3trees and grasses are known to experience CO2fertilization, whereas responses to CO2by C4grasses are more ambiguous.Here, we sample stable carbon isotope trends in herbarium collections of South African C4and C3grasses to reconstruct13C discrimination.We found that C3grasses showed no trends in13C discrimination over the past century but that C4grasses increased their13C discrimination through time, especially since 1950. These changes were most strongly linked to changes in atmospheric CO2rather than to trends in rainfall climatology or temperature.Combined with previously published evidence that grass biomass has increased in C4‐dominated savannas, these trends suggest that increasing water‐use efficiency due to CO2fertilization may be changing C4plant–water relations. CO2fertilization of C4grasses may thus be a neglected pathway for anthropogenic global change in tropical savanna ecosystems. 
    more » « less