skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fitting Mid-Spatial Frequency Surface Errors with a Rapidly Decaying Fourier Series
We apply the Nb=1 solution of the Rapidly Decaying Fourier series to fit mid-spatial frequency surface errors. Using this basis enables definition of sharp spatial frequency bandlimits for mid-spatial frequency specification of optical surfaces.  more » « less
Award ID(s):
1822049 2310640
PAR ID:
10526037
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optica Publishing Group
Date Published:
ISBN:
978-1-957171-22-7
Format(s):
Medium: X
Location:
Quebec City, Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. We apply the Nb=1 solution of the Rapidly Decaying Fourier series to fit mid-spatial frequency surface errors. Using this basis enables definition of sharp spatial frequency bandlimits for mid-spatial frequency specification of optical surfaces. 
    more » « less
  2. We describe the development of a data library of mid-spatial frequency surface errors for optical components. This resource enables better understanding of specification of mid-spatial frequency surface errors and their connections to optical performance. 
    more » « less
  3. We describe the development of a data library of mid-spatial frequency surface errors for optical components. This resource enables better understanding of specification of mid-spatial frequency surface errors and their connections to optical performance. 
    more » « less
  4. We demonstrate nano-structuring and the reduction of mid-spatial-frequency errors using femtosecond laser figuring and finishing. For the first time, to the best of our knowledge, we have corrected mid-spatial-frequency errors from 17 nm to one nanometer in magnitude. We established a method for creating and predicting periodic nanostructures. This demonstration opens the path of using femtosecond lasers to correct surface errors that inherently result from sub-aperture manufacturing techniques. 
    more » « less
  5. Quantitative phase imaging (QPI) is an invaluable microscopic technology for definitively imaging phase objects such as biological cells and optical fibers. Traditionally, the condenser lens in QPI produces disk illumination of the object. However, it has been realized by numerous investigators that annular illumination can produce higher-resolution images. Although this performance improvement is impressive and well documented, the evidence presented has invariably been qualitative in nature. Recently, a theoretical basis for annular illumination was presented by Baoet al.[Appl. Opt.58,137(2019)APOPAI0003-693510.1364/AO.58.000137]. In our current work, systematic experimental QPI measurements are made with a reference phase mask to rigorously document the performance of annular illumination. In both theory and experiment, three spatial-frequency regions are identified: low, mid, and high. The low spatial-frequency region response is very similar for disk and annular illumination, both theoretically and experimentally. Theoretically, the high spatial-frequency region response is predicted to be much better for the annular illumination compared to the disk illumination––and is experimentally confirmed. In addition, the mid-spatial-frequency region response is theoretically predicted to be less for annular illumination than for disk illumination. This theoretical degradation of the mid-spatial-frequency region is only slightly experimentally observed. This bonus, although not well understood, further elevates the performance of annular illumination over disk illumination. 
    more » « less