skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Proteome-wide 4-hydroxy-2-nonenal signature of oxidative stress in the marine invasive tunicate Botryllus schlosseri
The colonial ascidianBoytryllus schlosseriis an invasive marine chordate that thrives under conditions of anthropogenic climate change. We show that theB. schlosseriexpressed proteome contains unusually high levels of proteins that are adducted with 4-hydroxy-2-nonenal (HNE). HNE represents a prominent posttranslational modification resulting from oxidative stress. Although numerous studies have assessed oxidative stress in marine organisms HNE protein modification has not previously been determined in any marine species. LC/MS proteomics was used to identify 1052 HNE adducted proteins inB. schlosserifield and laboratory populations. Adducted amino acid residues were ascertained for 1849 modified sites, of which 1195 had a maximum amino acid localization score. Most HNE modifications were at less reactive lysines (rather than more reactive cysteines). HNE prevelance on most sites was high. These observations suggest thatB. schlosseriexperiences and tolerates high intracellular reactive oxygen species levels, resulting in substantial lipid peroxidation. HNE adducted B. schlosseri proteins show enrichment in mitochondrial, proteostasis, and cytoskeletal functions. Based on these results we propose that redox signaling contributes to regulating energy metabolism, the blastogenic cycle, oxidative burst defenses, and cytoskeleton dynamics duringB. schlosseridevelopment and physiology. A DIA assay library was constructed to quantify HNE adduction at 72 sites across 60 proteins that represent a holistic network of functionally discernable oxidative stress bioindicators. We conclude that the vast amount of HNE protein adduction in this circumpolar tunicate is indicative of high oxidative stress tolerance contributing to its range expansion into diverse environments.  more » « less
Award ID(s):
2127516 2127517
PAR ID:
10526078
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study establishes the copper tolerance range of the colonial marine tunicateBotryllus schlosseri. Furthermore, quantitative organismal phenotyping and quantitative proteomics were combined to characterize theB. schlosseriresponse to, and recovery from, acute copper exposure stress. Changes in the area ofB. schlossericolony systems and pigmentation provided sensitive, dose-dependent markers of exposure to, and recovery from, copper stress. Comprehensive quantitative proteomics using consistent data-independent acquisition (DIA) assay libraries revealed activation of detoxification, oxidative stress, and immune pathways during exposure to copper stress. In addition, quantitative proteomics uncovered enrichment of tissue remodeling and proliferative signaling pathways during recovery from copper stress. We identified 35 proteins whose expression closely mirrored phenotypic changes observed at the colonial system level. This specific proteome signature represents a comprehensive molecular underpinning of the organismal response ofB. schlosserito copper stress. In conclusion, this study establishes copper tolerance ranges of the invasive colonial tunicateB. schlosseriand explains the molecular underpinnings of stress-induced organismal phenotypes by identifying corresponding proteome signatures and their associated functional enrichments. Moreover, identification of copper concentrations that are stressful and highly disruptive on the molecular phenotype, yet readily recoverable from, lays a critical foundation for future studies directed at stress-induced adaptation and evolutionary trajectories of marine invertebrates in changing and novel environments. 
    more » « less
  2. Abstract Botryllus schlosseri, is a model marine invertebrate for studying immunity, regeneration, and stress‐induced evolution. Conditions for validating its predicted proteome were optimized using nanoElute® 2 deep‐coverage LCMS, revealing up to 4930 protein groups and 20,984 unique peptides per sample. Spectral libraries were generated and filtered to remove interferences, low‐quality transitions, and only retain proteins with >3 unique peptides. The resulting DIA assay library enabled label‐free quantitation of 3426 protein groups represented by 22,593 unique peptides. Quantitative comparisons of single systems from a laboratory‐raised with two field‐collected populations revealed (1) a more unique proteome in the laboratory‐raised population, and (2) proteins with high/low individual variabilities in each population. DNA repair/replication, ion transport, and intracellular signaling processes were distinct in laboratory‐cultured colonies. Spliceosome and Wnt signaling proteins were the least variable (highly functionally constrained) in all populations. In conclusion, we present the first colonial tunicate's deep quantitative proteome analysis, identifying functional protein clusters associated with laboratory conditions, different habitats, and strong versus relaxed abundance constraints. These results empower research onB. schlosseriwith proteomics resources and enable quantitative molecular phenotyping of changes associated with transfer from in situ to ex situ and from in vivo to in vitro culture conditions. 
    more » « less
  3. ABSTRACT Pistachio thrives in semi‐arid and arid environments and is highly adaptable to various abiotic stresses. However, soil salinization significantly threatens productivity, leading to considerable osmotic and ionic stress for these plants. Roots are the primary sites for stress perception and response; however, they remain understudied in woody crops, such asPistachio. This study examines the alterations in root protein expression and metabolic pathways in response to sodium chloride‐induced salt stress through biochemical and proteomic analyses. One‐year‐old pistachio rootstocks were treated with four different saline water regimes over a 100‐day period, and the total proteins were isolated from these samples. Over 1600 protein identifiers were detected, with comparative analysis revealing 245 proteins that were more abundant and 190 that were less abundant across three stress levels. Key pathways associated with stress tolerance, such as protein modification, folding, and heat shock protein (HSP) protection, were upregulated. An increase in secondary metabolites played a crucial role in detoxification. As salt stress intensified, the abundance of trafficking proteins increased, enhancing transporter activities. Active signaling pathways were observed at lower stress levels, while structural proteins became more critical at higher stress levels for maintaining cell membrane integrity. This cultivar exhibited enhanced kinase activities that regulate lipid and carbohydrate metabolism, thereby aiding in ion homeostasis and maintaining redox balance. The protein interaction network, mapped to orthologous proteins inArabidopsis thaliana, revealed clusters associated with cytosolic, carbohydrate, and amino acid metabolism contributing to salinity stress tolerance. The validation of proteomic data was performed by assessing corresponding changes in transcript levels. The study expands upon previous work by providing a comprehensive proteomic map of UCB‐1 pistachio rootstock across multiple salinity levels. The findings have practical implications for developing more resilient cultivars, supporting sustainable pistachio production in regions prone to salinity. 
    more » « less
  4. Radical-mediated lipid oxidation and the formation of lipid hydroperoxides has been a focal point in the investigation of a number of human pathologies. Lipid peroxidation has long been linked to the inflammatory response and more recently, has been identified as the central tenet of the oxidative cell death mechanism known as ferroptosis. The formation of lipid electrophile-protein adducts has been associated with many of the disorders that involve perturbations of the cellular redox status, but the identities of adducted proteins and the effects of adduction on protein function are mostly unknown. Both cholesterol and 7-dehydrocholesterol (7-DHC), which is the immediate biosynthetic precursor to cholesterol, are oxidizable by species such as ozone and oxygen-centered free radicals. Product mixtures from radical chain processes are particularly complex, with recent studies having expanded the sets of electrophilic compounds formed. Here, we describe recent developments related to the formation of sterol-derived electrophiles and the adduction of these electrophiles to proteins. A framework for understanding sterol peroxidation mechanisms, which has significantly advanced in recent years, as well as the methods for the study of sterol electrophile-protein adduction, are presented in this review. 
    more » « less
  5. Abstract Pathogenesis of COVID-19 by SARS-CoV-2 resulted in a global pandemic and public health emergency in 2020. Viral infection can induce oxidative stress through reactive oxygen species (ROS). Inflammation and environmental stress are major sources of oxidative stress after infection. Micronutrients such as iron, copper, zinc, and manganese play various roles in human tissues and their imbalance in blood can impact immune responses against pathogens including SARS CoV-2. We hypothesized that alteration of free metal ions during infection and metal-catalyzed oxidation plays a critical role towards pathogenesis after infection. We analyzed convalescent and hospitalized COVID-19 patient plasma using orthogonal analytical techniques to determine redox active metal concentrations, overall protein oxidation, oxidative modifications, and protein levels via proteomics to understand the consequences of metal-induced oxidative stress in COVID-19 plasma proteins. Metal analysis using ICP-MS showed significantly greater concentrations of copper in COVID-19 plasma compared to healthy controls. We demonstrate significantly greater total protein carbonylation, other oxidative modifications, and deamidation of plasma proteins in COVID-19 plasma compared to healthy controls. Proteomics analysis showed that levels of redox active proteins including hemoglobulin were elevated in COVID-19 plasma. Molecular modeling concurred with potential interactions between iron binding proteins and SARS CoV-2 surface proteins. Overall, increased levels of redox active metals and protein oxidation indicate that oxidative stress-induced protein oxidation in COVID-19 may be a consequence of the interactions of SARS-CoV-2 proteins with host cell metal binding proteins resulting in altered cellular homeostasis. 
    more » « less