skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A heterotic Kodaira-Spencer theory at one-loop
A<sc>bstract</sc> We consider a heterotic version of six-dimensional Kodaira-Spencer gravity derived from the heterotic superpotential. We compute the one-loop partition function and find it can be expressed as a product of holomorphic Ray-Singer torsions. We discuss its topological properties and potential gauge and gravitational anomalies. We show these anomalies can be cancelled using Green-Schwarz-like counter-terms. We also discuss the dependence on the background geometry, and in particular the choice of hermitian metric needed for quantisation. Given suitable topological constraints, this dependence may again be cancelled by the addition of purely background-dependent counter-terms. We also explain how our methods provide the one-loop partition functions of a large class of more general holomorphic field theories in terms of holomorphic Ray-Singer torsions.  more » « less
Award ID(s):
2112859
PAR ID:
10526164
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
JHEP
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2023
Issue:
10
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> Deformations of the heterotic superpotential give rise to a topological holomorphic theory with similarities to both Kodaira-Spencer gravity and holomorphic Chern-Simons theory. Although the action is cubic, it is only quadratic in the complex structure deformations (the Beltrami differential). Treated separately, for large fluxes, or alternatively at large distances in the background complex structure moduli space, these fields can be integrated out to obtain a new field theory in the remaining fields, which describe the complexified hermitian and gauge degrees of freedom. We investigate properties of this new holomorphic theory, and in particular connections to the swampland distance conjecture in the context of heterotic string theory. In the process, we define a new type of symplectic cohomology theory, where the background complex structure Beltrami differential plays the role of the symplectic form. 
    more » « less
  2. null (Ed.)
    A bstract The superpotential in four-dimensional heterotic effective theories contains terms arising from holomorphic Chern-Simons invariants associated to the gauge and tangent bundles of the compactification geometry. These effects are crucial for a number of key features of the theory, including vacuum stability and moduli stabilization. Despite their importance, few tools exist in the literature to compute such effects in a given heterotic vacuum. In this work we present new techniques to explicitly determine holomorphic Chern-Simons invariants in heterotic string compactifications. The key technical ingredient in our computations are real bundle morphisms between the gauge and tangent bundles. We find that there are large classes of examples, beyond the standard embedding, where the Chern-Simons superpotential vanishes. We also provide explicit examples for non-flat bundles where it is non-vanishing and non-integer quantized, generalizing previous results for Wilson lines. 
    more » « less
  3. A<sc>bstract</sc> In this work computation of the renormalised mass at two loop order for the NS sector of heterotic string theory is attempted. We first implement the vertical integration prescription for choosing a section avoiding the spurious poles due to the presence of a required number of picture changing operators. As a result the relevant amplitude on genus 2 Riemann surface can be written as a boundary term. We then identify the 1PI region of the moduli space having chosen a gluing compatible local coordinates around the external punctures. We also identify the relevant integrands and the relevant region of integration for the modular parameters at the boundary. 
    more » « less
  4. A<sc>bstract</sc> Dependence on the graviton gauge enters the conventional effective field equations because they fail to account for quantum gravitational correlations with the source which excites the effective field and with the observer who measures it. Including these correlations has been shown to eliminate gauge dependence in flat space background. We generalize the technique to de Sitter background for the case of the 1-loop graviton corrections to the exchange potential of a massless, minimally coupled scalar. 
    more » « less
  5. A bstract We analyze topological mass terms of BF type arising in supersymmetric M-theory compactifications to AdS 5 . These describe spontaneously broken higher-form gauge symmetries in the bulk. Different choices of boundary conditions for the BF terms yield dual field theories with distinct global discrete symmetries. We discuss in detail these symmetries and their ’t Hooft anomalies for 4d $$ \mathcal{N} $$ N = 1 SCFTs arising from M5-branes wrapped on a Riemann surface without punctures, including theories from M5-branes at a ℤ 2 orbifold singularity. The anomaly polynomial is computed via inflow and contains background fields for discrete global 0-, 1-, and 2-form symmetries and continuous 0-form symmetries, as well as axionic background fields. The latter are properly interpreted in the context of anomalies in the space of coupling constants. 
    more » « less