skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on May 30, 2025

Title: Chemical bonding in Uranium‐based materials: A local vibrational mode case study of Cs 2UO 2Cl 4 and UCl 4 crystals
Abstract The Local Vibrational Mode Analysis, initially applied to diverse molecular systems, was extended to periodic systems in 2019. This work introduces an enhanced version of the LModeA software, specifically designed for the comprehensive analysis of two and three‐dimensional periodic structures. Notably, a novel interface with theCrystalpackage was established, enabling a seamless transition from molecules to periodic systems using a unified methodology. Two distinct sets of uranium‐based systems were investigated: (i) the evolution of the Uranyl ion (UO) traced from its molecular configurations to the solid state, exemplified by CsUOCl and (ii) Uranium tetrachloride (UCl) in both its molecular and crystalline forms. The primary focus was on exploring the impact of crystal packing on key properties, including IR and Raman spectra, structural parameters, and an in‐depth assessment of bond strength utilizing local mode perspectives. This work not only demonstrates the adaptability and versatility of LModeA for periodic systems but also highlights its potential for gaining insights into complex materials and aiding in the design of new materials through fine‐tuning.  more » « less
Award ID(s):
2102461
PAR ID:
10526198
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Journal of Computational Chemistry
Date Published:
Journal Name:
Journal of Computational Chemistry
Volume:
45
Issue:
14
ISSN:
0192-8651
Page Range / eLocation ID:
1130 to 1142
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This review summarizes the recent developments regarding the use of uranium as nuclear fuel, including recycling and health aspects, elucidated from a chemical point of view, i.e., emphasizing the rich uranium coordination chemistry, which has also raised interest in using uranium compounds in synthesis and catalysis. A number of novel uranium coordination features are addressed, such the emerging number of U(II) complexes and uranium nitride complexes as a promising class of materials for more efficient and safer nuclear fuels. The current discussion about uranium triple bonds is addressed by quantum chemical investigations using local vibrational mode force constants as quantitative bond strength descriptors based on vibrational spectroscopy. The local mode analysis of selected uranium nitrides, N≡U≡N, U≡N, N≡U=NH and N≡U=O, could confirm and quantify, for the first time, that these molecules exhibit a UN triple bond as hypothesized in the literature. We hope that this review will inspire the community interested in uranium chemistry and will serve as an incubator for fruitful collaborations between theory and experimentation in exploring the wealth of uranium chemistry. 
    more » « less
  2. A<sc>bstract</sc> We introduce a class of 4-dimensional crystal melting models that count the BPS bound state of branes on toric Calabi-Yau 4-folds. The crystalline structure is determined by the brane brick model associated to the Calabi-Yau 4-fold under consideration or, equivalently, its dual periodic quiver. The crystals provide a discretized version of the underlying toric geometries. We introduce various techniques to visualize crystals and their melting configurations, including 3-dimensional slicing and Hasse diagrams. We illustrate the construction with the D0-D8 system on$${\mathbb{C}}$$4. Finally, we outline how our proposal generalizes to arbitrary toric CY 4-folds and general brane configurations. 
    more » « less
  3. Abstract This study investigates dioxygen binding and 2‐oxoglutarate (2OG) coordination by two model non‐heme FeII/2OG enzymes: a class 7 histone demethylase (PHF8) that catalyzes the hydroxylation of its H3K9me2 histone substrate leading to demethylation reactivity and the ethylene‐forming enzyme (EFE), which catalyzes two competing reactions of ethylene generation and substratel‐Arg hydroxylation. Although both enzymes initially bind 2OG by using anoff‐line2OG coordination mode, in PHF8, the substrate oxidation requires a transition to anin‐linemode, whereas EFE is catalytically productive for ethylene production from 2OG in theoff‐linemode. We used classical molecular dynamics (MD), quantum mechanics/molecular mechanics (QM/MM) MD and QM/MM metadynamics (QM/MM‐MetD) simulations to reveal that it is the dioxygen binding process and, ultimately, the protein environment that control the formation of thein‐lineFeIII‐OO⋅intermediate in PHF8 and theoff‐lineFeIII‐OO⋅intermediate in EFE. 
    more » « less
  4. Abstract Locally resonant materials allow for wave propagation control in the subwavelength regime. Even though these materials do not need periodicity, they are usually designed as periodic systems since this allows for the application of the Bloch theorem and analysis of the entire system based on a single unit cell. However, geometries that are invariant to translation result in equations of motion with periodic coefficients only if we assume plane wave propagation. When wave fronts are cylindrical or spherical, a system realized through tessellation of a unit cell does not result in periodic coefficients and the Bloch theorem cannot be applied. Therefore, most studies of periodic locally resonant systems are limited to plane wave propagation. In this article, we address this limitation by introducing a locally resonant effective phononic crystal composed of a radially varying matrix with attached torsional resonators. This material is not geometrically periodic but exhibits effective periodicity, i.e., its equations of motion are invariant to radial translations, allowing the Bloch theorem to be applied to radially propagating torsional waves. We show that this material can be analyzed under the already developed framework for metamaterials. To show the importance of using an effectively periodic system, we compare its behavior to a system that is not effectively periodic but has geometric periodicity. We show considerable differences in transmission as well as in the negative effective properties of these two systems. Locally resonant effective phononic crystals open possibilities for subwavelength elastic wave control in the near field of sources. 
    more » « less
  5. Abstract Recent work in nonlinear topological metamaterials has revealed many useful properties such as amplitude dependent localized vibration modes and nonreciprocal wave propagation. However, thus far, there have not been any studies to include the use of local resonators in these systems. This work seeks to fill that gap through investigating a nonlinear quasi-periodic metamaterial with periodic local resonator attachments. We model a one-dimensional metamaterial lattice as a spring-mass chain with coupled local resonators. Quasi-periodic modulation in the nonlinear connecting springs is utilized to achieve topological features. For comparison, a similar system without local resonators is also modeled. Both analytical and numerical methods are used to study this system. The dispersion relation of the infinite chain of the proposed system is determined analytically through the perturbation method of multiple scales. This analytical solution is compared to the finite chain response, estimated using the method of harmonic balance and solved numerically. The resulting band structures and mode shapes are used to study the effects of quasi-periodic parameters and excitation amplitude on the system behavior both with and without the presence of local resonators. Specifically, the impact of local resonators on topological features such as edge modes is established, demonstrating the appearance of a trivial bandgap and multiple localized edge states for both main cells and local resonators. These results highlight the interplay between local resonance and nonlinearity in a topological metamaterial demonstrating for the first time the presence of an amplitude invariant bandgap alongside amplitude dependent topological bandgaps. 
    more » « less