We review osmotic stress studies of the G-protein-coupled receptor rhodopsin. Despite the established presence of small amounts of structural water in these receptors, the influence of bulk water on their function remains unknown. Investigations of osmotic stress effects on the GPCR archetype rhodopsin have provided unique data about the role of water in receptor activation. It was discovered that osmolytes shift the rhodopsin equilibrium after photoactivation, either to the active or inactive conformations depending on their molar mass. Experimentally at least 80 water molecules have been found to enter rhodopsin in the transition to the active state. We propose that this influx of water is a necessary condition for receptor activation. If the water movement is blocked, e.g., by large osmolytes or by dehydration, then the receptor does not undergo its functional transition. The results suggest a new model whereby rhodopsin becomes swollen and partially unfolded in the activation mechanism. Water thus acts as a powerful allosteric modulator of functioning for rhodopsin-like receptors. Keywords: G-protein-coupled receptors, membranes, optical spectroscopy, rhodopsin, signal transduction.
more »
« less
Osmotic stress studies of G-protein-coupled receptor rhodopsin activation
We summarize and critically review osmotic stress studies of the G-protein-coupled receptor rhodopsin. Although small amounts of structural water are present in these receptors, the effect of bulk water on their function remains uncertain. Studies of the influences of osmotic stress on the GPCR archetype rhodopsin have given insights into the functional role of water in receptor activation. Experimental work has discovered that osmolytes shift the metarhodopsin equilibrium after photoactivation, either to the active or inactive conformations according to their molar mass. At least 80 water molecules are found to enter rhodopsin in the transition to the photoreceptor active state. We infer that this movement of water is both necessary and sufficient for receptor activation. If the water influx is prevented, e.g., by large polymer osmolytes or by dehydration, then the receptor functional transition is back shifted. These findings imply a new paradigm in which rhodopsin becomes solvent swollen in the activation mechanism. Water thus acts as an allosteric modulator of function for rhodopsin-like receptors in lipid membranes.
more »
« less
- PAR ID:
- 10526249
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Biophysical Chemistry
- Volume:
- 304
- ISSN:
- 0301-4622
- Page Range / eLocation ID:
- 107112
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Rhodopsin family of G-protein–coupled receptors (GPCRs) comprises the targets of nearly a third of all pharmaceuticals. Despite structural water present in GPCR X-ray structures, the physiological relevance of these solvent molecules to rhodopsin signaling remains unknown. Here, we show experimental results consistent with the idea that rhodopsin activation in lipid membranes is coupled to bulk water movements into the protein. To quantify hydration changes, we measured reversible shifting of the metarhodopsin equilibrium due to osmotic stress using an extensive series of polyethylene glycol (PEG) osmolytes. We discovered clear evidence that light activation entails a large influx of bulk water (∼80–100 molecules) into the protein, giving insight into GPCR activation mechanisms. Various size polymer osmolytes directly control rhodopsin activation, in which large solutes are excluded from rhodopsin and dehydrate the protein, favoring the inactive state. In contrast, small osmolytes initially forward shift the activation equilibrium until a quantifiable saturation point is reached, similar to gain-of-function protein mutations. For the limit of increasing osmolyte size, a universal response of rhodopsin to osmotic stress is observed, suggesting it adopts a dynamic, hydrated sponge-like state upon photoactivation. Our results demand a rethinking of the role of water dynamics in modulating various intermediates in the GPCR energy landscape. We propose that besides bound water, an influx of bulk water plays a necessary role in establishing the active GPCR conformation that mediates signaling.more » « less
-
The receptor-like kinase (RLK) family of receptors and the associated receptor-like cytoplasmic kinases (RLCKs) have expanded in plants because of selective pressure from environmental stress and evolving pathogens. RLCKs link pathogen perception to activation of coping mechanisms. RLK–RLCK modules regulate hormone synthesis and responses, reactive oxygen species (ROS) production, Ca2+ signaling, activation of mitogen-activated protein kinase (MAPK), and immune gene expression, all of which contribute to immunity. Some RLCKs integrate responses from multiple receptors recognizing distinct ligands. RLKs/RLCKs and nucleotide-binding domain, leucine-rich repeats (NLRs) were found to synergize, demonstrating the intertwined genetic network in plant immunity. Studies in arabidopsis (Arabidopsis thaliana) have provided paradigms about RLCK functions, but a lack of understanding of crop RLCKs undermines their application. In this review, we summarize current understanding of the diverse functions of RLCKs, based on model systems and observations in crop species, and the emerging role of RLCKs in pathogen and abiotic stress response signaling.more » « less
-
Homodimeric class 1 cytokine receptors include the erythropoietin (EPOR), thrombopoietin (TPOR), granulocyte colony-stimulating factor 3 (CSF3R), growth hormone (GHR), and prolactin receptors (PRLR). These cell-surface single-pass transmembrane (TM) glycoproteins regulate cell growth, proliferation, and differentiation and induce oncogenesis. An active TM signaling complex consists of a receptor homodimer, one or two ligands bound to the receptor extracellular domains and two molecules of Janus Kinase 2 (JAK2) constitutively associated with the receptor intracellular domains. Although crystal structures of soluble extracellular domains with ligands have been obtained for all the receptors except TPOR, little is known about the structure and dynamics of the complete TM complexes that activate the downstream JAK-STAT signaling pathway. Three-dimensional models of five human receptor complexes with cytokines and JAK2 were generated here using AlphaFold Multimer. Given the large size of the complexes (from 3220 to 4074 residues), the modeling required a stepwise assembly from smaller parts with selection and validation of the models through comparisons with published experimental data. The modeling of active and inactive complexes supports a general activation mechanism that involves ligand binding to a monomeric receptor followed by receptor dimerization and rotational movement of the receptor TM α-helices causing proximity, dimerization, and activation of associated JAK2 subunits. The binding mode of two eltrombopag molecules to TM α-helices of the active TPOR dimer was proposed. The models also help elucidating the molecular basis of oncogenic mutations that may involve a non-canonical activation route. Models equilibrated in explicit lipids of the plasma membrane are publicly available.more » « less
-
How diatoms respond to fluctuations in osmotic pressure is important from both ecological and applied perspectives. It is well known that osmotic stress affects photosynthesis and can result in the accumulation of compounds desirable in pharmaceutical and alternative fuel industries. Gene expression responses to osmotic stress have been studied in short‐term trials, but it is unclear whether the same mechanisms are recruited during long‐term acclimation. We used RNA‐seq to study the genome‐wide transcription patterns in the euryhaline diatom,Cyclotella cryptica, following long‐term acclimation to salinity that spanned the natural range of fresh to oceanic water. Long‐term acclimatedC. crypticaexhibited induced synthesis or repressed degradation of the osmolytes glycine betaine, taurine and dimethylsulfoniopropionate (DMSP). Although changes in proline concentration is one of the main responses in short‐term osmotic stress, we did not detect a transcriptional change in proline biosynthetic pathways in our long‐term experiment. Expression of membrane transporters showed a general tendency for increased import of potassium and export of sodium, consistent with the electrochemical gradients and dependence on co‐transported molecules. Our results show substantial between‐genotype differences in growth and gene expression reaction norms and suggest that the regulation of proline synthesis important in short‐term osmotic stress might not be maintained in long‐term acclimation. Further examination using time‐course gene expression experiments, metabolomics and genetic validation of gene functions would reinforce patterns inferred from RNA‐seq data.more » « less