Introduction: Recent AI advances, particularly the introduction of large language models (LLMs), have expanded the capacity to automate various tasks, including the analysis of text. This capability may be especially helpful in education research, where lack of resources often hampers the ability to perform various kinds of analyses, particularly those requiring a high level of expertise in a domain and/or a large set of textual data. For instance, we recently coded approximately 10,000 state K-12 computer science standards, requiring over 200 hours of work by subject matter experts. If LLMs are capable of completing a task such as this, the savings in human resources would be immense. Research Questions: This study explores two research questions: (1) How do LLMs compare to humans in the performance of an education research task? and (2) What do errors in LLM performance on this task suggest about current LLM capabilities and limitations? Methodology: We used a random sample of state K-12 computer science standards. We compared the output of three LLMs – ChatGPT, Llama, and Claude – to the work of human subject matter experts in coding the relationship between each state standard and a set of national K-12 standards. Specifically, the LLMs and the humans determined whether each state standard was identical to, similar to, based on, or different from the national standards and (if it was not different) which national standard it resembled. Results: Each of the LLMs identified a different national standard than the subject matter expert in about half of instances. When the LLM identified the same standard, it usually categorized the type of relationship (i.e., identical to, similar to, based on) in the same way as the human expert. However, the LLMs sometimes misidentified ‘identical’ standards. Discussion: Our results suggest that LLMs are not currently capable of matching human performance on the task of classifying learning standards. The mis-identification of some state standards as identical to national standards – when they clearly were not – is an interesting error, given that traditional computing technologies can easily identify identical text. Similarly, some of the mismatches between the LLM and human performance indicate clear errors on the part of the LLMs. However, some of the mismatches are difficult to assess, given the ambiguity inherent in this task and the potential for human error. We conclude the paper with recommendations for the use of LLMs in education research based on these findings.
more »
« less
MisgenderMender: A Community-Informed Approach to Interventions for Misgendering
Misgendering, the act of incorrectly addressing someone’s gender, inflicts serious harm and is pervasive in everyday technologies, yet there is a notable lack of research to combat it. We are the first to address this lack of research into interventions for misgendering by conducting a survey of gender-diverse individuals in the US to understand perspectives about automated interventions for text-based misgendering. Based on survey insights on the prevalence of misgendering, desired solutions, and associated concerns, we introduce a misgendering interventions task and evaluation dataset, MisgenderMender. We define the task with two sub-tasks: (i) detecting misgendering, followed by (ii) correcting misgendering where misgendering is present, in domains where editing is appropriate. MisgenderMender comprises 3790 instances of social media content and LLM-generations about non-cisgender public figures, annotated for the presence of misgendering, with additional annotations for correcting misgendering in LLM-generated text. Using this dataset, we set initial benchmarks by evaluating existing NLP systems and highlighting challenges for future models to address.
more »
« less
- Award ID(s):
- 2046873
- PAR ID:
- 10526346
- Publisher / Repository:
- Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT)
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Text-to-image generative models have achieved unprecedented success in generating high-quality images based on natural language descriptions. However, it is shown that these models tend to favor specific social groups when prompted with neutral text descriptions (e.g., ‘a photo of a lawyer’). Following Zhao et al. (2021), we study the effect on the diversity of the generated images when adding ethical intervention that supports equitable judgment (e.g., ‘if all individuals can be a lawyer irrespective of their gender’) in the input prompts. To this end, we introduce an Ethical NaTural Language Interventions in Text-to-Image GENeration (ENTIGEN) benchmark dataset to evaluate the change in image generations conditional on ethical interventions across three social axes – gender, skin color, and culture. Through CLIP-based and human evaluation on minDALL.E, DALL.E-mini and Stable Diffusion, we find that the model generations cover diverse social groups while preserving the image quality. In some cases, the generations would be anti-stereotypical (e.g., models tend to create images with individuals that are perceived as man when fed with prompts about makeup) in the presence of ethical intervention. Preliminary studies indicate that a large change in the model predictions is triggered by certain phrases such as ‘irrespective of gender’ in the context of gender bias in the ethical interventions. We release code and annotated data at https://github.com/Hritikbansal/entigen_emnlp.more » « less
-
There is a need to help more students succeed in science, technology, engineering, and mathematics (STEM) education, with particular interest in reducing current gender gaps in motivation and participation. We propose a new theoretical model, the STEreotypes, Motivation, and Outcomes (STEMO) developmental model, to account for and integrate recent data emerging in social and developmental psychology. Based on this model, we synthesize research suggesting that social factors, such as stereotypes and self-representations about “belonging,” are powerful contributors to observed gender differences in STEM interest and academic outcomes. The review has four parts. First, we examine how cultural stereotypes specific to STEM contribute to gender gaps by negatively impacting interest and academic outcomes. Second, we review the central role of the self-representations affected by those stereotypes, including the particular importance of a sense of belonging. Third, we discuss various interventions that buffer against stereotypes and enhance a sense of belonging to reduce gender gaps in STEM interest and academic outcomes. Finally, we suggest theory-driven directions for future research. By organizing the research in this way, our review and theoretical analysis clarify key factors contributing to current gender gaps in STEM and mechanisms by which psychological interventions can help address STEM gender gaps.more » « less
-
LLM chains enable complex tasks by decomposing work into a sequence of subtasks. Similarly, the more established techniques of crowdsourcing workflows decompose complex tasks into smaller tasks for human crowdworkers. Chains address LLM errors analogously to the way crowdsourcing workflows address human error. To characterize opportunities for LLM chaining, we survey 107 papers across the crowdsourcing and chaining literature to construct a design space for chain development. The design space covers a designer’sobjectivesand thetacticsused to build workflows. We then surfacestrategiesthat mediate how workflows use tactics to achieve objectives. To explore how techniques from crowdsourcing may apply to chaining, we adapt crowdsourcing workflows to implement LLM chains across three case studies: creating a taxonomy, shortening text, and writing a short story. From the design space and our case studies, we identify takeaways for effective chain design and raise implications for future research and development.more » « less
-
null (Ed.)Most existing research on visual question answering (VQA) is limited to information explicitly present in an image or a video. In this paper, we take visual understanding to a higher level where systems are challenged to answer questions that involve mentally simulating the hypothetical consequences of performing specific actions in a given scenario. Towards that end, we formulate a vision-language question answering task based on the CLEVR (Johnson et. al., 2017) dataset. We then modify the best existing VQA methods and propose baseline solvers for this task. Finally, we motivate the development of better vision-language models by providing insights about the capability of diverse architectures to perform joint reasoning over image-text modality. Our dataset setup scripts and codes will be made publicly available at https://github.com/shailaja183/clevr_hyp.more » « less
An official website of the United States government

