skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2046873

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Practitioners increasingly use machine learning (ML) models, yet models have become more complex and harder to understand. To understand complex models, researchers have proposed techniques to explain model predictions. However, practitioners struggle to use explainability methods because they do not know which explanation to choose and how to interpret the explanation. Here we address the challenge of using explainability methods by proposing TalkToModel: an interactive dialogue system that explains ML models through natural language conversations. TalkToModel consists of three components: an adaptive dialogue engine that interprets natural language and generates meaningful responses; an execution component that constructs the explanations used in the conversation; and a conversational interface. In real-world evaluations, 73% of healthcare workers agreed they would use TalkToModel over existing systems for understanding a disease prediction model, and 85% of ML professionals agreed TalkToModel was easier to use, demonstrating that TalkToModel is highly effective for model explainability. 
    more » « less
  2. In machine learning research, it is common to evaluate algorithms via their performance on standard benchmark datasets. While a growing body of work establishes guidelines for—and levies criticisms at—data and benchmarking practices in machine learning, comparatively less attention has been paid to the data repositories where these datasets are stored, documented, and shared. In this paper, we analyze the landscape of these benchmark data repositories and the role they can play in improving benchmarking. This role includes addressing issues with both datasets themselves (e.g., representational harms, construct validity) and the manner in which evaluation is carried out using such datasets (e.g., overemphasis on a few datasets and metrics, lack of reproducibility). To this end, we identify and discuss a set of considerations surrounding the design and use of benchmark data repositories, with a focus on improving benchmarking practices in machine learning. 
    more » « less
    Free, publicly-accessible full text available June 5, 2026
  3. Large language models (LLMs) require alignment to effectively and safely follow user instructions. This process necessitates training an aligned version for every base model, resulting in significant computational overhead. In this work, we propose NUDGING, a simple, training-free algorithm that aligns any base model at inference time using a small aligned model. NUDGING is motivated by recent findings that alignment primarily alters the model’s behavior on a small subset of stylistic tokens (e.g., discourse markers). We find that base models are significantly more uncertain when generating these tokens. Building on this insight, NUDGING employs a small aligned model to generate nudging tokens to guide the base model’s output during decoding when the base model’s uncertainty is high, with only a minor additional inference overhead. We evaluate NUDGING across 3 model families on a diverse range of open-instruction tasks. Without any training, nudging a large base model with a 7×-14× smaller aligned model achieves zero-shot performance comparable to, and sometimes surpassing, that of large aligned models. By operating at the token level, NUDGING enables off-the-shelf collaboration between model families. For instance, nudging Gemma-2-27b with Llama-27b-chat outperforms Llama-2-70b-chat on various tasks. Overall, our work offers a modular and cost-efficient solution to LLM alignment. Our code and demo are available at: https://fywalter.github.io/nudging/. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  4. Humans have the ability to reason about geometric patterns in images and scenes from a young age. However, developing large multimodal models (LMMs) capable of similar reasoning remains a challenge, highlighting the need for robust evaluation methods to assess these capabilities. We introduce TurtleBench, a benchmark designed to evaluate LMMs’ capacity to interpret geometric patterns—given visual examples, textual instructions, or both—and generate precise code outputs. Inspired by turtle geometry, a notion used to teach children foundational coding and geometric concepts, TurtleBench features tasks with patterned shapes that have underlying algorithmic logic. Our evaluation reveals that leading LMMs struggle significantly with these tasks, with GPT-4V achieving only 19% accuracy on the simplest tasks and few-shot prompting only marginally improves their performance (<2%). TurtleBench highlights the gap between human and AI performance in intuitive and visual geometrical understanding, setting the stage for future research in this area and stands as one of the few benchmarks to evaluate the integration of visual understanding and code generation capabilities in LMMs, setting the stage for future research. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  5. Language models are achieving impressive performance on various tasks by aggressively adopting inference-time prompting techniques,such as zero-shot and few-shot prompting. In this work, we introduce EchoPrompt, a simple yet effective approach that prompts the model to rephrase its queries before answering them. EchoPrompt is tailored for four scenarios, including standard and chain-of-thought prompting, in both zero-shot and few-shot settings. Experimental results show that EchoPrompt yields substantial improvementsacross all these settings for four families of causal language models. These improvements are observed across various numerical reasoning (e.g., GSM8K, SVAMP), reading comprehension (e.g., DROP), and logical reasoning (e.g., Coin flipping) tasks. On average, EchoPrompt improves the Zero-shot-CoT performance of code-davinci-002 by 5% in numerical tasks and 13% in reading comprehension tasks. Our empirical results indicate that EchoPrompt is an effective technique that enhances in-context learning performance. 
    more » « less
  6. The latest large language models (LMs) support increasingly longer contexts. While this trend permits using substantial amounts of text with SOTA LMs, requiring these large LMs to process potentially redundant or irrelevant data needlessly increases inference time and cost. To remedy this problem, we propose BLINDER, a method that leverages a small finetuned LM to sample the minimal set of input features that maximizes the performance of a downstream LM. BLINDER trains an LM with a value head to estimate the likelihood of optimal outputs from a downstream LM given an input. We evaluate BLINDER on embodied decision making tasks with notoriously verbose state descriptions: NetHack and robot planning. BLINDER reduces the length of LM actor input by 87% and 99% while improving task success rates by 158% and 54% on NetHack and robot planning respectively which represents substantial inference cost savings while actually increasing performance. 
    more » « less
  7. Misgendering, the act of incorrectly addressing someone’s gender, inflicts serious harm and is pervasive in everyday technologies, yet there is a notable lack of research to combat it. We are the first to address this lack of research into interventions for misgendering by conducting a survey of gender-diverse individuals in the US to understand perspectives about automated interventions for text-based misgendering. Based on survey insights on the prevalence of misgendering, desired solutions, and associated concerns, we introduce a misgendering interventions task and evaluation dataset, MisgenderMender. We define the task with two sub-tasks: (i) detecting misgendering, followed by (ii) correcting misgendering where misgendering is present, in domains where editing is appropriate. MisgenderMender comprises 3790 instances of social media content and LLM-generations about non-cisgender public figures, annotated for the presence of misgendering, with additional annotations for correcting misgendering in LLM-generated text. Using this dataset, we set initial benchmarks by evaluating existing NLP systems and highlighting challenges for future models to address. 
    more » « less
  8. Bias amplification is a phenomenon in which models exacerbate biases or stereotypes present in the training data. In this paper, we study bias amplification in the text-to-image domain using Stable Diffusion by comparing gender ratios in training vs. generated images. We find that the model appears to amplify gender-occupation biases found in the training data (LAION) considerably. However, we discover that amplification can be largely attributed to discrepancies between training captions and model prompts. For example, an inherent difference is that captions from the training data often contain explicit gender information while our prompts do not, which leads to a distribution shift and consequently inflates bias measures. Once we account for distributional differences between texts used for training and generation when evaluating amplification, we observe that amplification decreases drastically. Our findings illustrate the challenges of comparing biases in models and their training data, as well as evaluation more broadly, and highlight how confounding factors can impact analyses. 
    more » « less
  9. We introduce UnStereoEval (USE), a novel framework tailored for investigating gender bias in stereotype-free scenarios. USE defines a sentence-level score based on pretraining data statistics to determine if the sentence contain minimal word-gender associations. To systematically benchmark the fairness of popular language models in stereotype-free scenarios, we utilize USE to automatically generate benchmarks without any gender-related language. By leveraging USE's sentence-level score, we also repurpose prior gender bias benchmarks (Winobias and Winogender) for non-stereotypical evaluation. Surprisingly, we find low fairness across all 28 evaluated models. Concretely, models demonstrate fair behavior in only 9%-41% of stereotype-free sentences, suggesting that bias does not solely stem from the presence of gender-related words. These results raise important questions about where underlying model biases come from and highlight the need for more systematic and comprehensive bias evaluation. 
    more » « less
  10. In-context learning and chain-of-thought prompting have demonstrated surprising performance improvements on mathematical reasoning benchmarks. Therefore, understanding the underlying factors enabling these capabilities is crucial. However, the specific aspects of pretraining data that equip models with mathematical reasoning capabilities remain largely unexplored and are less studied systematically. In this study, we identify subsets of model pretraining data that contribute to math reasoning ability of the model, and evaluate it on several mathematical operations (e.g. addition, multiplication) and tasks (e.g. the asdiv dataset). We measure the importance of such subsets by continual training of the model on pretraining data subsets, and then we quantify the change in performance on the mathematical benchmark to assess their importance. If a subset results in an improved performance, we conjecture that such subset contributes to a model's overall mathematical ability. Our results unveil that while training on math-only data contributes to simple arithmetic abilities, it does not solely explain performance on more complex reasoning abilities like chain-of-thought reasoning. We also find that code data contributes to chain-of-thought reasoning while reducing the arithmetic performance. 
    more » « less