skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on June 1, 2025

Title: EchoPrompt: Instructing the Model to Rephrase Queries for Improved In-context Learning
Language models are achieving impressive performance on various tasks by aggressively adopting inference-time prompting techniques,such as zero-shot and few-shot prompting. In this work, we introduce EchoPrompt, a simple yet effective approach that prompts the model to rephrase its queries before answering them. EchoPrompt is tailored for four scenarios, including standard and chain-of-thought prompting, in both zero-shot and few-shot settings. Experimental results show that EchoPrompt yields substantial improvementsacross all these settings for four families of causal language models. These improvements are observed across various numerical reasoning (e.g., GSM8K, SVAMP), reading comprehension (e.g., DROP), and logical reasoning (e.g., Coin flipping) tasks. On average, EchoPrompt improves the Zero-shot-CoT performance of code-davinci-002 by 5% in numerical tasks and 13% in reading comprehension tasks. Our empirical results indicate that EchoPrompt is an effective technique that enhances in-context learning performance.  more » « less
Award ID(s):
2046873
NSF-PAR ID:
10526347
Author(s) / Creator(s):
; ;
Publisher / Repository:
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT)
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pretrained Language Models (LMs) have demonstrated ability to perform numerical reasoning by extrapolating from a few examples in few-shot settings. However, the extent to which this extrapolation relies on robust reasoning is unclear. In this paper, we investigate how well these models reason with terms that are less frequent in the pretraining data. In particular, we examine the correlations between the model performance on test instances and the frequency of terms from those instances in the pretraining data. We measure the strength of this correlation for a number of GPT-based language models (pretrained on the Pile dataset) on various numerical deduction tasks (e.g., arithmetic and unit conversion). Our results consistently demonstrate that models are more accurate on instances whose terms are more prevalent, in some cases above 70% (absolute) more accurate on the top 10% frequent terms in comparison to the bottom 10%. Overall, although LMs appear successful at few-shot numerical reasoning, our results raise the question of how much models actually generalize beyond pretraining data, and we encourage researchers to take the pretraining data into account when interpreting evaluation results. 
    more » « less
  2. Advances in large language models (LLMs) have empowered a variety of applications. However, there is still a significant gap in research when it comes to understanding and enhancing the capabilities of LLMs in the field of mental health. In this work, we present a comprehensive evaluation of multiple LLMs on various mental health prediction tasks via online text data, including Alpaca, Alpaca-LoRA, FLAN-T5, GPT-3.5, and GPT-4. We conduct a broad range of experiments, covering zero-shot prompting, few-shot prompting, and instruction fine-tuning. The results indicate a promising yet limited performance of LLMs with zero-shot and few-shot prompt designs for mental health tasks. More importantly, our experiments show that instruction finetuning can significantly boost the performance of LLMs for all tasks simultaneously. Our best-finetuned models, Mental-Alpaca and Mental-FLAN-T5, outperform the best prompt design of GPT-3.5 (25 and 15 times bigger) by 10.9% on balanced accuracy and the best of GPT-4 (250 and 150 times bigger) by 4.8%. They further perform on par with the state-of-the-art task-specific language model. We also conduct an exploratory case study on LLMs' capability on mental health reasoning tasks, illustrating the promising capability of certain models such as GPT-4. We summarize our findings into a set of action guidelines for potential methods to enhance LLMs' capability for mental health tasks. Meanwhile, we also emphasize the important limitations before achieving deployability in real-world mental health settings, such as known racial and gender bias. We highlight the important ethical risks accompanying this line of research. 
    more » « less
  3. The ability of generative language models (GLMs) to generate text has improved considerably in the last few years, enabling their use for generative data augmentation. In this work, we propose CONDA, an approach to further improve GLM’s ability to generate synthetic data by reformulating data generation as context generation for a given question-answer (QA) pair and leveraging QA datasets for training context generators. Then, we cast downstream tasks into the same question answering format and adapt the fine-tuned context generators to the target task domain. Finally, we use the fine-tuned GLM to generate relevant contexts, which are in turn used as synthetic training data for their corresponding tasks. We perform extensive experiments on multiple classification datasets and demonstrate substantial improvements in performance for both few- and zero-shot settings. Our analysis reveals that QA datasets that require high-level reasoning abilities (e.g., abstractive and common-sense QA datasets) tend to give the best boost in performance in both few-shot and zero-shot settings. 
    more » « less
  4. Language model (LM) prompting—a popular paradigm for solving NLP tasks—has been shown to be susceptible to miscalibration and brittleness to slight prompt variations, caused by its discriminative prompting approach, i.e., predicting the label given the input. To address these issues, we propose Gen-Z—a generative prompting framework for zero-shot text classification. GEN-Z is generative, as it measures the LM likelihood of input text, conditioned on natural language descriptions of labels. The framework is multivariate, as label descriptions allow us to seamlessly integrate additional contextual information about the labels to improve task performance. On various standard classification benchmarks, with six open-source LM families, we show that zero-shot classification with simple contextualization of the data source of the evaluation set consistently outperforms both zero-shot and few-shot baselines while improving robustness to prompt variations. Further, our approach enables personalizing classification in a zero-shot manner by incorporating author, subject, or reader information in the label descriptions. 
    more » « less
  5. Large language models (LLMs) are increasingly adopted for a variety of tasks with implicit graphical structures, such as planning in robotics, multi-hop question answering or knowledge probing, structured commonsense reasoning, and more. While LLMs have advanced the state-of-the-art on these tasks with structure implications, whether LLMs could explicitly process textual descriptions of graphs and structures, map them to grounded conceptual spaces, and perform structured operations remains underexplored. To this end, we propose NLGraph (Natural Language Graph), a comprehensive benchmark of graph-based problem solving designed in natural language. NLGraph contains 29,370 problems, covering eight graph reasoning tasks with varying complexity from simple tasks such as connectivity and shortest path up to complex problems such as maximum flow and simulating graph neural networks. We evaluate LLMs (GPT-3/4) with various prompting approaches on the NLGraph benchmark and find that 1) language models do demonstrate preliminary graph reasoning abilities, 2) the benefit of advanced prompting and in-context learning diminishes on more complex graph problems, while 3) LLMs are also (un)surprisingly brittle in the face of spurious correlations in graph and problem settings. We then propose Build-a-Graph Prompting and Algorithmic Prompting, two instruction-based approaches to enhance LLMs in solving natural language graph problems. Build-a-Graph and Algorithmic prompting improve the performance of LLMs on NLGraph by 3.07% to 16.85% across multiple tasks and settings, while how to solve the most complicated graph reasoning tasks in our setup with language models remains an open research question. 
    more » « less