This paper is concerned with the optimized Schwarz waveform relaxation method and Ventcel transmission conditions for the linear advection-diffusion equation. A mixed formulation is considered in which the flux variable represents both diffusive and advective flux, and Lagrange multipliers are introduced on the interfaces between nonoverlapping subdomains to handle tangential derivatives in the Ventcel conditions. A space-time interface problem is formulated and is solved iteratively. Each iteration involves the solution of time-dependent problems with Ventcel boundary conditions in the subdomains. The subdomain problems are discretized in space by a mixed hybrid finite element method based on the lowest-order Raviart-Thomas space and in time by the backward Euler method. The proposed algorithm is fully implicit and enables different time steps in the subdomains. Numerical results with discontinuous coefficients and various Peclét numbers validate the accuracy of the method with nonconforming time grids and confirm the improved convergence properties of Ventcel conditions over Robin conditions.
more »
« less
Moving interfaces in peridynamic diffusion models and the influence of discontinuous initial conditions: Numerical stability and convergence
We derive numerical stability conditions and analyze convergence to analytical nonlocal solutions of 1D peridynamic models for transient diffusion with and without a moving interface. In heat transfer or oxidation, for example, one often encounters initial conditions that are discontinuous, as in thermal shock or sudden exposure to oxygen. We study the numerical error in these models with continuous and discontinuous initial conditions and determine that the initial discontinuities lead to lower convergence rates, but this issue is present at early times only. Except for the early times, the convergence rates of models with continuous and discontinuous initial conditions are the same. In problems with moving interfaces, we show that the numerical solution captures the exact interface location well, in time. These results can be used in simulating a variety of reaction-diffusion type problems, such as the oxidation-induced damage in zirconium carbide at high temperatures.
more »
« less
- Award ID(s):
- 2206741
- PAR ID:
- 10526376
- Publisher / Repository:
- Computers & Mathematics with Applications
- Date Published:
- Journal Name:
- Computers & Mathematics with Applications
- Volume:
- 151
- Issue:
- C
- ISSN:
- 0898-1221
- Page Range / eLocation ID:
- 384 to 396
- Subject(s) / Keyword(s):
- Peridynamics Diffusion-reaction problem Numerical stability Discontinuous initial conditions Phase change Moving interface
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We investigate, both analytically and numerically, dispersive fractalisation and quantisation of solutions to periodic linear and nonlinear Fermi–Pasta–Ulam–Tsingou systems. When subject to periodic boundary conditions and discontinuous initial conditions, e.g., a step function, both the linearised and nonlinear continuum models for FPUT exhibit fractal solution profiles at irrational times (as determined by the coefficients and the length of the interval) and quantised profiles (piecewise constant or perturbations thereof) at rational times. We observe a similar effect in the linearised FPUT chain at times t where these models have validity, namely t = O( h −2 ), where h is proportional to the intermass spacing or, equivalently, the reciprocal of the number of masses. For nonlinear periodic FPUT systems, our numerical results suggest a somewhat similar behaviour in the presence of small nonlinearities, which disappears as the nonlinear force increases in magnitude. However, these phenomena are manifested on very long time intervals, posing a severe challenge for numerical integration as the number of masses increases. Even with the high-order splitting methods used here, our numerical investigations are limited to nonlinear FPUT chains with a smaller number of masses than would be needed to resolve this question unambiguously.more » « less
-
The quasi-geostrophic (QG) equations play a crucial role in our understanding of atmospheric and oceanic fluid dynamics. Nevertheless, the traditional QG equations describe ‘dry’ dynamics that do not account for moisture and clouds. To move beyond the dry setting, precipitating QG (PQG) equations have been derived recently using formal asymptotics. Here, we investigate whether the moist Boussinesq equations with phase changes will converge to the PQG equations. A priori , it is possible that the nonlinearity at the phase interface (cloud edge) may complicate convergence. A numerical investigation of convergence or non-convergence is presented here. The numerical simulations consider cases of ϵ = 0.1 , 0.01 and 0.001, where ϵ is proportional to the Rossby and Froude numbers. In the numerical simulations, the magnitude of vertical velocity w (or other measures of imbalance and inertio-gravity waves) is seen to be approximately proportional to ϵ as ϵ decreases, which suggests convergence to PQG dynamics. These measures are quantified at a fixed time T that is O ( 1 ) , and the numerical data also suggests the possibility of convergence at later times. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 2)’.more » « less
-
Abstract In this paper, we explore the non-asymptotic global convergence rates of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method implemented with exact line search. Notably, due to Dixon’s equivalence result, our findings are also applicable to other quasi-Newton methods in the convex Broyden class employing exact line search, such as the Davidon-Fletcher-Powell (DFP) method. Specifically, we focus on problems where the objective function is strongly convex with Lipschitz continuous gradient and Hessian. Our results hold for any initial point and any symmetric positive definite initial Hessian approximation matrix. The analysis unveils a detailed three-phase convergence process, characterized by distinct linear and superlinear rates, contingent on the iteration progress. Additionally, our theoretical findings demonstrate the trade-offs between linear and superlinear convergence rates for BFGS when we modify the initial Hessian approximation matrix, a phenomenon further corroborated by our numerical experiments.more » « less
-
Investigation of economies as complex adaptive systems may provide a deeper understanding of their behavior and response to perturbation. We use methodologies from ecology to test whether the global economy has discontinuous size distributions, a signature of multi-scale processes in complex adaptive systems, and we contrast the theoretical assumptions underpinning our methodology with that of the economic convergence club literature. Discontinuous distributions in complex systems consist of aggregations of similarly-sized entities, separated by gaps, in a pattern of non-random departures from a continuous or power law distribution. We analysed per capita real GDP (in 2005 constant dollars) for all countries of the world, from 1970 to 2012. We tested each yearly distribution for discontinuities, and then compared the distributions over time using multivariate modelling. We find that the size distribution of the world’s economies are discontinuous and that there are persistent patterns of aggregations and gaps over time. These size classes are outwardly similar to convergence clubs, but are derived from theory that presumes that economies are complex adaptive systems. We argue that the underlying mechanisms, rather than emerging from conditions of initial equivalence, evolve and operate at multiple scales that can be objectively identified and assessed. Understanding the patterns within and across scales may provide insight into the processes that structure GDP over time.more » « less
An official website of the United States government

