Previous studies have described the geometry of pseudotachylyte-bearing faults in the Ikertôq shear zone (ISZ) as “paired shears.” This study found these are more complex structures formed in preexisting, wedge-shaped, imbricate damage zones. As part of an NSF REU, this project conducted outcrop-scale mapping in part of the 50-km ISZ pseudotachylyte system on Sarfannguit Island in southwestern Greenland. The pseudotachylyte system is comprised of master oblique-reverse faults concordant to strongly foliated host gneisses linked through discordant strike-slip relay faults. Within the imbricate wedges, pseudotachylytes are complexly distributed around rotated and folded gneissic blocks between stacked systems of master reverse faults. This study mapped five imbricate wedges using high resolution drone imagery in map view and hand photography on vertical outcrops. This resulted in a new geometrical three-dimensional perspective. Wedges form where foliation is platy, typically between more coherent hanging wall and footwall blocks. Preliminary calculations indicate average rotations of eight to eighteen degrees within the damage zones. Field measurements suggest the upper fault in the imbricate wedge is approximately planar, while the lower fault splays off the upper fault at a twenty to thirty degree angle, creating a concave-up cuspate geometry. Both faults have the same shear sense, with fold axes and pseudotachylyte slickenlines indicating reverse oblique offset, usually with a component of dextral shear. Initial deformation and brecciation of the blocks is interpreted as forming prior to the pseudotachylyte-forming event. 
                        more » 
                        « less   
                    
                            
                            KINEMATICS OF COMPLEX MULTI-FAULT EARTHQUAKE RUPTURE RECORDED BY PSEUDOTACHYLYTES FROM THE IKERTÔQ SHEAR ZONE, GREENLAND: AN NSF REU STUDY
                        
                    
    
            Flow connectivity between master and relay faults in the Ikertôq shear zone demonstrates that multiple ruptures during ancient earthquakes occurred during a single seismic event. The Ikertôq shear zone (ISZ) is part of the Paleoproterozoic Nagssuqtoqidian orogeny continental collision in West Greenland that includes a > 50 km pseudotachylyte system. As part of an NSF REU, this team mapped various faults throughout a 2 km transect on high-resolution UAV images of exhumed pseudotachylyte vein systems on the western end of Sarfannguit island to investigate the kinematics of multi-fault ruptures during individual seismic events. Pseudotachylyte veins exhibit a complex rupture geometry with linked kinematics between oblique reverse master faults striking approximately 240 and steep east-west relay faults dominated by strike-slip movement. Near complete exposure of veins provide a unique opportunity to document fault linkages and the partitioning of slip, including the interconnectivity of flow patterns of melt in pseudotachylyte veins, as well as angular ladders of melt. We measured the thickness of pseudotachylyte fault veins and injection veins along transects to examine slip partitioning between multiple reverse faults and strike-slip relay faults. Melt thickness is used as a proxy for earthquake slip since the pseudotachylyte melt occurred on faults that exhibit preexisting brittle displacement. The results of preliminary calculations from energy balance equations show that typical slip on some oblique reverse master faults was on the order of a meter or less, while typical slip on some east-west relay faults was cm scale. Our data clarify that most slip occurred on oblique reverse master faults with subsidiary slip on east-west relay faults. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1950839
- PAR ID:
- 10526510
- Publisher / Repository:
- Geological Society of America
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The Eastern California shear zone is a complex set of dextral faults that accommodates significant plate motion and has produced large earthquakes. The evolution of this system and why it consists of closely spaced, irregular faults that fail in multi‐fault ruptures are not well understood. Here we analyze the geometry, spatial distribution, and Quaternary slip activity of right‐lateral faults in the southern Mojave block. We find these faults are oriented favorably for accommodating regional dextral plate motion and do not show evidence of replacement following counterclockwise rotation to unfavorable positions, although activity may be migrating westward as previously proposed. We also confirm that the shear zone is transpressive, with widespread restraining bends, distributed convergent deformation, and significant impact on near‐fault topography. Observations also show that faults are geometrically complex, as represented by along‐strike variability in fault strike. We document a correlation between strike variability and fault activity (slip rate or net slip), which is evident within the shear zone as well as for a control group of other faults. We suggest that strike variability represents a form of geometric roughness, which may inhibit fault slip and result in complex ruptures, slip‐strengthening behavior, and a prevalence of off‐fault deformation. Other factors, including preexisting crustal fabric, edge effects, and changes in the stress field, may further complicate kinematics. These results suggest that faults of the shear zone are still juvenile and somewhat unique, yet offer an important window into how broadly distributed shear may evolve into a through‐going continental transform system.more » « less
- 
            ABSTRACT The largest earthquake since 1954 to strike the state of Nevada, United States, ruptured on 15 May 2020 along the Monte Cristo range of west-central Nevada. The Mw 6.5 event involved predominantly left-lateral strike-slip faulting with minor normal components on three aligned east–west-trending faults that vary in strike by 23°. The kinematic rupture process is determined by joint inversion of Global Navigation Satellite Systems displacements, Interferometric Synthetic Aperture Radar (InSAR) data, regional strong motions, and teleseismic P and SH waves, with the three-fault geometry being constrained by InSAR surface deformation observations, surface ruptures, and relocated aftershock distributions. The average rupture velocity is 1.5 km/s, with a peak slip of ∼1.6 m and a ∼20 s rupture duration. The seismic moment is 6.9×1018 N·m. Complex surface deformation is observed near the fault junction, with a deep near-vertical fault and a southeast-dipping fault at shallow depth on the western segment, along which normal-faulting aftershocks are observed. There is a shallow slip deficit in the Nevada ruptures, probably due to the immature fault system. The causative faults had not been previously identified and are located near the transition from the Walker Lane belt to the Basin and Range province. The east–west geometry of the system is consistent with the eastward extension of the Mina Deflection of the Walker Lane north of the White Mountains.more » « less
- 
            Abstract Active traces of the southern Fairweather fault were revealed by light detection and ranging (lidar) and show evidence for transpressional deformation between North America and the Yakutat block in southeast Alaska. We map the Holocene geomorphic expression of tectonic deformation along the southern 30 km of the Fairweather fault, which ruptured in the 1958 moment magnitude 7.8 earthquake. Digital maps of surficial geology, geomorphology, and active faults illustrate both strike-slip and dip-slip deformation styles within a 10°–30° double restraining bend where the southern Fairweather fault steps offshore to the Queen Charlotte fault. We measure offset landforms along the fault and calibrate legacy 14C data to reassess the rate of Holocene strike-slip motion (≥49 mm/yr), which corroborates published estimates that place most of the plate boundary motion on the Fairweather fault. Our slip-rate estimates allow a component of oblique-reverse motion to be accommodated by contractional structures west of the Fairweather fault consistent with geodetic block models. Stratigraphic and structural relations in hand-dug excavations across two active fault strands provide an incomplete paleoseismic record including evidence for up to six surface ruptures in the past 5600 years, and at least two to four events in the past 810 years. The incomplete record suggests an earthquake recurrence interval of ≥270 years—much longer than intervals <100 years implied by published slip rates and expected earthquake displacements. Our paleoseismic observations and map of active traces of the southern Fairweather fault illustrate the complexity of transpressional deformation and seismic potential along one of Earth's fastest strike-slip plate boundaries.more » « less
- 
            Releasing bends along active strike-slip faults display a range of fault patterns that may depend on crustal strength. Scaled physical experiments allow us to directly document the evolution of established releasing bend systems under differing strength conditions. Here, we use a split-box apparatus filled with wet clay of differing strengths to run and analyze releasing bend evolution. Precut vertical discontinuities within the clay slip with right-lateral displacement of the basal plate followed by the development of oblique-slip secondary faults. In contrast to the weaker clay experiment, which produces left-lateral cross faults that facilitate major reorganization of the primary slip pathway, the stronger clay experiment produces negligible cross faults and has a persistent primary slip pathway. Within both experiments, the dip of initially vertical faults shallows due to lateral flow at depth and left-lateral slip develops along normal fault segments that have highly oblique strike. The experiments show that fault systems within weaker strength materials produce greater delocalization of faulting, with both greater number of faults and greater off-fault deformation that can impact hazard. For example, the hot, thin and weak crust hosting the Brawley Seismic Zone accommodates slip along many distributed faults, which is in sharp contrast to the more localized fault network of the Southern Gar Basin in cooler, thicker and stronger crust. The fault patterns observed in the experiments match patterns of crustal examples and may guide future models of fault evolution within relatively strong and weak crust that have differing heat flux and thickness.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    