skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Seismic and Geodetic Analysis of Rupture Characteristics of the 2020 Mw 6.5 Monte Cristo Range, Nevada, Earthquake
ABSTRACT The largest earthquake since 1954 to strike the state of Nevada, United States, ruptured on 15 May 2020 along the Monte Cristo range of west-central Nevada. The Mw 6.5 event involved predominantly left-lateral strike-slip faulting with minor normal components on three aligned east–west-trending faults that vary in strike by 23°. The kinematic rupture process is determined by joint inversion of Global Navigation Satellite Systems displacements, Interferometric Synthetic Aperture Radar (InSAR) data, regional strong motions, and teleseismic P and SH waves, with the three-fault geometry being constrained by InSAR surface deformation observations, surface ruptures, and relocated aftershock distributions. The average rupture velocity is 1.5  km/s, with a peak slip of ∼1.6  m and a ∼20  s rupture duration. The seismic moment is 6.9×1018  N·m. Complex surface deformation is observed near the fault junction, with a deep near-vertical fault and a southeast-dipping fault at shallow depth on the western segment, along which normal-faulting aftershocks are observed. There is a shallow slip deficit in the Nevada ruptures, probably due to the immature fault system. The causative faults had not been previously identified and are located near the transition from the Walker Lane belt to the Basin and Range province. The east–west geometry of the system is consistent with the eastward extension of the Mina Deflection of the Walker Lane north of the White Mountains.  more » « less
Award ID(s):
1802364
PAR ID:
10330529
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Bulletin of the Seismological Society of America
Volume:
111
Issue:
6
ISSN:
0037-1106
Page Range / eLocation ID:
3226 to 3236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract On 4 and 6 July 2019, two large strike‐slip earthquakes withW‐phase moment magnitudesMWW6.5 (foreshock) andMWW7.1 (mainshock) struck the Eastern California Shear Zone, northeast of Ridgecrest. The faulting geometry and kinematic coseismic slip distribution of both events are determined by jointly inverting seismological and geodetic observations guided by aftershock and surface rupture locations. The foreshock ruptured two orthogonal faults with a prominent L‐shaped geometry with maximum slip of ~1.1 m on the NE‐SW segment. The mainshock faulting extended NW‐SE along several primary fault segments that straddle the foreshock slip. The surface rupture and slip model indicate mostly near‐horizontal strike‐slip motion with maximum slip of ~3.7 m, but there is a localized vertical dip‐slip motion. Both the foreshock and mainshock ruptures terminate in regions of complex surface offsets. High aftershock productivity and low rupture velocity may be the result of rupture of a relatively immature fault system. 
    more » « less
  2. Abstract Despite a lack of modern large earthquakes on shallowly dipping normal faults, Holocene M w  > 7 low-angle normal fault (LANF; dip<30°) ruptures are preserved paleoseismically and inferred from historical earthquake and tsunami accounts. Even in well-recorded megathrust earthquakes, the effects of non-linear off-fault plasticity and dynamically reactivated splay faults on shallow deformation and surface displacements, and thus hazard, remain elusive. We develop data-constrained 3D dynamic rupture models of the active Mai’iu LANF that highlight how multiple dynamic shallow deformation mechanisms compete during large LANF earthquakes. We show that shallowly-dipping synthetic splays host more coseismic slip and limit shallow LANF rupture more than steeper antithetic splays. Inelastic hanging-wall yielding localizes into subplanar shear bands indicative of newly initiated splay faults, most prominently above LANFs with thick sedimentary basins. Dynamic splay faulting and sediment failure limit shallow LANF rupture, modulating coseismic subsidence patterns, near-shore slip velocities, and the seismic and tsunami hazards posed by LANF earthquakes. 
    more » « less
  3. Flow connectivity between master and relay faults in the Ikertôq shear zone demonstrates that multiple ruptures during ancient earthquakes occurred during a single seismic event. The Ikertôq shear zone (ISZ) is part of the Paleoproterozoic Nagssuqtoqidian orogeny continental collision in West Greenland that includes a > 50 km pseudotachylyte system. As part of an NSF REU, this team mapped various faults throughout a 2 km transect on high-resolution UAV images of exhumed pseudotachylyte vein systems on the western end of Sarfannguit island to investigate the kinematics of multi-fault ruptures during individual seismic events. Pseudotachylyte veins exhibit a complex rupture geometry with linked kinematics between oblique reverse master faults striking approximately 240 and steep east-west relay faults dominated by strike-slip movement. Near complete exposure of veins provide a unique opportunity to document fault linkages and the partitioning of slip, including the interconnectivity of flow patterns of melt in pseudotachylyte veins, as well as angular ladders of melt. We measured the thickness of pseudotachylyte fault veins and injection veins along transects to examine slip partitioning between multiple reverse faults and strike-slip relay faults. Melt thickness is used as a proxy for earthquake slip since the pseudotachylyte melt occurred on faults that exhibit preexisting brittle displacement. The results of preliminary calculations from energy balance equations show that typical slip on some oblique reverse master faults was on the order of a meter or less, while typical slip on some east-west relay faults was cm scale. Our data clarify that most slip occurred on oblique reverse master faults with subsidiary slip on east-west relay faults. 
    more » « less
  4. null (Ed.)
    Existing models of intracontinental deformation have focused on plate-like rigid body motion v. viscous-flow-like distributed deformation. To elucidate how plate convergence is accommodated by intracontinental strike-slip faulting and block rotation within a fold–thrust belt, we examine the Cenozoic structural framework of the central Qilian Shan of northeastern Tibet, where the NW-striking, right-slip Elashan and Riyueshan faults terminate at the WNW-striking, left-slip Haiyuan and Kunlun faults. Field- and satellite-based observations of discrete right-slip fault segments, releasing bends, horsetail termination splays and off-fault normal faulting suggest that the right-slip faults accommodate block rotation and distributed west–east crustal stretching between the Haiyuan and Kunlun faults. Luminescence dating of offset terrace risers along the Riyueshan fault yields a Quaternary slip rate of c. 1.1 mm a −1 , which is similar to previous estimates. By integrating our results with regional deformation constraints, we propose that the pattern of Cenozoic deformation in northeastern Tibet is compatible with west–east crustal stretching/lateral displacement, non-rigid off-fault deformation and broad clockwise rotation and bookshelf faulting, which together accommodate NE–SW India–Asia convergence. In this model, the faults represent strain localization that approximates continuum deformation during regional clockwise lithospheric flow against the rigid Eurasian continent. Supplementary material: Luminescence dating procedures and protocols is available at https://doi.org/10.17605/OSF.IO/CR9MN Thematic collection: This article is part of the Fold-and-thrust belts and associated basins collection available at: https://www.lyellcollection.org/cc/fold-and-thrust-belts 
    more » « less
  5. Abstract The spatial distribution and kinematics of intracontinental deformation provide insight into the dominant mode of continental tectonics: rigid-body motion versus continuum flow. The discrete San Andreas fault defines the western North America plate boundary, but transtensional deformation is distributed hundreds of kilometers eastward across the Walker Lane–Basin and Range provinces. In particular, distributed Basin and Range extension has been encroaching westward onto the relatively stable Sierra Nevada block since the Miocene, but the timing and style of distributed deformation overprinting the stable Sierra Nevada crust remains poorly resolved. Here we bracket the timing, magnitude, and kinematics of overprinting Walker Lane and Basin and Range deformation in the Pine Nut Mountains, Nevada (USA), which are the westernmost structural and topographic expression of the Basin and Range, with new geologic mapping and 40Ar/39Ar geochronology. Structural mapping suggests that north-striking normal faults developed during the initiation of Basin and Range extension and were later reactivated as northeast-striking oblique-slip faults following the onset of Walker Lane transtensional deformation. Conformable volcanic and sedimentary rocks, with new ages spanning ca. 14.2 Ma to 6.8 Ma, were tilted 30°–36° northwest by east-dipping normal faults. This relationship demonstrates that dip-slip deformation initiated after ca. 6.8 Ma. A retrodeformed cross section across the range suggests that the range experienced 14% extension. Subsequently, Walker Lane transtension initiated, and clockwise rotation of the Carson domain may have been accommodated by northeast-striking left-slip faults. Our work better defines strain patterns at the western extent of the Basin and Range province across an approximately 150-km-long east-west transect that reveals domains of low strain (∼15%) in the Carson Range–Pine Nut Mountains and Gillis Range surrounding high-magnitude extension (∼150%–180%) in the Singatse and Wassuk Ranges. There is no evidence for irregular crustal thickness variations across this same transect—either in the Mesozoic, prior to extension, or today—which suggests that strain must be accommodated differently at decoupled crustal levels to result in smooth, homogenous crustal thickness values despite the significantly heterogeneous extensional evolution. This example across an ∼150 km transect demonstrates that the use of upper-crust extension estimates to constrain pre-extension crustal thickness, assuming pure shear as commonly done for the Mesozoic Nevadaplano orogenic plateau, may not be reliable. 
    more » « less