Abstract Water and carbon dioxide are the most abundant volatile components in terrestrial magmas. As they exsolve into magmatic vapour, they promote magma buoyancy, accelerating ascent and modulating eruptive dynamics. It is commonly thought that an increase in pre-eruptive volatile content produces an increase in eruption intensity. Using a conduit model for basaltic eruptions, covering the upper 6 km of conduit, we show that for the same chamber conditions mass eruption rate is not affected by CO2content, whereas an increase in H2O up to 10 wt.% produces an increase in eruption rate of an order of magnitude. It is only when CO2is injected in the magma reservoir from an external source that the resulting pressurisation will generate a strong increase in eruption rate. Results also show that ascent velocity and fragmentation depth are strongly affected by pre-eruptive volatile contents demonstrating a link between volatile content and eruptive style.
more »
« less
Experimental observation of near-wall effects during the puncture of soft solids
The measured force during a puncture test is found to increase when the needle tip is near to the vial walls. An experimental method for quantifying this increase in stiffness is developed.
more »
« less
- Award ID(s):
- 1933487
- PAR ID:
- 10526516
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 20
- Issue:
- 18
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 3806 to 3813
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Understanding how extreme weather, such as tropical cyclones, will change with future climate warming is an interesting computational challenge. Here, the hindcast approach is used to create different storylines of a particular tropical cyclone, Hurricane Irma (2017). Using the community atmosphere model, we explore how Irma’s precipitation would change under various levels of climate warming. Analysis is focused on a 48 h period where the simulated hurricane tracks reasonably represent Irma’s observed track. Under future scenarios of 2 K, 3 K, and 4 K global average surface temperature increase above pre-industrial levels, the mean 3-hourly rainfall rates in the simulated storms increase by 3–7% K−1compared to present. This change increases in magnitude for the 95th and 99th percentile 3-hourly rates, which intensify by 10–13% K−1and 17–21% K−1, respectively. Over Florida, the simulated mean rainfall accumulations increase by 16–26% K−1, with local maxima increasing by 18–43% K−1. All percent changes increase monotonically with warming level.more » « less
-
How does protecting consumers' privacy affect the value of their personal data? We model an intermediary that uses consumers' data to influence prices set by a seller. When privacy is protected, consumers choose whether to disclose their data to the intermediary. When privacy is not protected, the intermediary can access consumers' data without their consent. We illustrate that protecting privacy has complex effects. It can increase the value of some consumers' data while decreasing that of others. It can have redistributive effects, by benefiting some consumers at the expense of others. Finally, it can increase average prices and reduce trade.more » « less
-
Regional studies of precipitation changes over Europe show that its eastern part is characterized by small changes in annual precipitation and insignificant aridity trends compared to central and southern Europe. However, a frequency analysis over the past 30 years showed statistically significant increasing dryness trends in eastern Europe and an increase in the occurrence of extremely high rainfall as well as prolonged no-rain intervals during the warm season. The largest increase in aridity was observed in the western and central parts of Belarus. During 1990–2020, the frequency of dry periods doubled in all river basins along the Black, Caspian, and Baltic Sea water divide areas of eastern Europe. From 1970 to 1990, there were high streamflow rates during the winter low-flow season. Consequently, over the past 50 years, in spring, we observed here a continued decrease in maximal discharges across all river basins. In summer, we detected a statistically significant increase in the number of days with anticyclonic weather over eastern Europe, a decrease in rainfall duration by 15–20%, an increase in daily precipitation maxima by 20–30%, and an increase in the number of days with a low relative humidity by 1–4 days per decade.more » « less
-
Weakly electric Gymnotiform fishes use self-generated electric organ discharges (EODs) to navigate and communicate. The electrosensory range for these processes is a function of EOD amplitude, determined by the fish's electric organ (EO) output and the electrical conductivity of the surrounding water. Anthropogenic activity, such as deforestation, dams, and industrial/agricultural runoff, are known to increase water conductivity in neotropical habitats, likely reducing the electrosensory range of these fish. We investigated whether fish modulate EO output as means of re-expanding electrosensory range after a rapid increase in water conductivity in the pulse-type Brachyhypopomus gauderio and the wave-type Eigenmannia virescens. Furthermore, because EOD production incurs significant metabolic costs, we assessed whether such compensation is associated with an increase in metabolic rate. Following the conductivity increase B. gauderio increased EOD amplitude by 20.2±4.3% over six days but with no associated increase in metabolic rate, whereas the EOD amplitude of E. virescens remained constant, accompanied by an unexpected decrease in metabolic rate. Our results suggest that B. gauderio uses a compensation mechanism that requires no metabolic investment, such as impedance matching, or a physiological tradeoff wherein energy is diverted from other physiological processes to increase EO output. These divergent responses between species could be the result of differences in reproductive life history or evolutionary adaptations to different aquatic habitats. Continued investigation of electrosensory responses to changing water conditions will be essential for understanding the effects of anthropogenic disturbances on gymnotiforms, and potential physiological mechanisms for adapting to a rapidly changing aquatic environment.more » « less
An official website of the United States government

