skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fingerprinting cities: differentiating subway microbiome functionality
Abstract BackgroundAccumulating evidence suggests that the human microbiome impacts individual and public health. City subway systems are human-dense environments, where passengers often exchange microbes. The MetaSUB project participants collected samples from subway surfaces in different cities and performed metagenomic sequencing. Previous studies focused on taxonomic composition of these microbiomes and no explicit functional analysis had been done till now. ResultsAs a part of the 2018 CAMDA challenge, we functionally profiled the available ~ 400 subway metagenomes and built predictor for city origin. In cross-validation, our model reached 81% accuracy when only the top-ranked city assignment was considered and 95% accuracy if the second city was taken into account as well. Notably, this performance was only achievable if the similarity of distribution of cities in the training and testing sets was similar. To assure that our methods are applicable without such biased assumptions we balanced our training data to account for all represented cities equally well. After balancing, the performance of our method was slightly lower (76/94%, respectively, for one or two top ranked cities), but still consistently high. Here we attained an added benefit of independence of training set city representation. In testing, our unbalanced model thus reached (an over-estimated) performance of 90/97%, while our balanced model was at a more reliable 63/90% accuracy. While, by definition of our model, we were not able to predict the microbiome origins previously unseen, our balanced model correctly judged them to be NOT-from-training-cities over 80% of the time.Our function-based outlook on microbiomes also allowed us to note similarities between both regionally close and far-away cities. Curiously, we identified the depletion in mycobacterial functions as a signature of cities in New Zealand, while photosynthesis related functions fingerprinted New York, Porto and Tokyo. ConclusionsWe demonstrated the power of our high-speed function annotation method,mi-faser,by analysing ~ 400 shotgun metagenomes in 2 days, with the results recapitulating functional signals of different city subway microbiomes. We also showed the importance of balanced data in avoiding over-estimated performance. Our results revealed similarities between both geographically close (Ofa and Ilorin) and distant (Boston and Porto, Lisbon and New York) city subway microbiomes. The photosynthesis related functional signatures of NYC were previously unseen in taxonomy studies, highlighting the strength of functional analysis.  more » « less
Award ID(s):
1553289
PAR ID:
10526556
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
BMC
Date Published:
Journal Name:
Biology Direct
Volume:
14
Issue:
1
ISSN:
1745-6150
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rudi, Knut (Ed.)
    ABSTRACT Many animals contain a species-rich and diverse gut microbiota that likely contributes to several host-supportive services that include diet processing and nutrient provisioning. Loss of microbiome taxa and their associated metabolic functions as result of perturbations may result in loss of microbiome-level services and reduction of metabolic capacity. If metabolic functions are shared by multiple taxa (i.e., functional redundancy), including deeply divergent lineages, then the impact of taxon/function losses may be dampened. We examined to what degree alterations in phylotype diversity impact microbiome-level metabolic capacity. Feeding two nutritionally imbalanced diets to omnivorousPeriplaneta americanaover 8 weeks reduced the diversity of their phylotype-rich gut microbiomes by ~25% based on 16S rRNA gene amplicon sequencing, yet PICRUSt2-inferred metabolic pathway richness was largely unaffected due to their being polyphyletic. We concluded that the nonlinearity between taxon and metabolic functional losses is due to microbiome members sharing many well-characterized metabolic functions, with lineages remaining after perturbation potentially being capable of preventing microbiome “service outages” due to functional redundancy. IMPORTANCEDiet can affect gut microbiome taxonomic composition and diversity, but its impacts on community-level functional capabilities are less clear. Host health and fitness are increasingly being linked to microbiome composition and further modeling of the relationship between microbiome taxonomic and metabolic functional capability is needed to inform these linkages. Invertebrate animal models like the omnivorous American cockroach are ideal for this inquiry because they are amenable to various diets and provide high replicates per treatment at low costs and thus enabling rigorous statistical analyses and hypothesis testing. Microbiome taxonomic composition is diet-labile and diversity was reduced after feeding on unbalanced diets (i.e., post-treatment), but the predicted functional capacities of the post-treatment microbiomes were less affected likely due to the resilience of several abundant taxa surviving the perturbation as well as many metabolic functions being shared by several taxa. These results suggest that both taxonomic and functional profiles should be considered when attempting to infer how perturbations are altering gut microbiome services and possible host outcomes. 
    more » « less
  2. The Building Tune-up process has been in incorporated into the mindset of building owners in Seattle. Every five years this process needs to be implemented for all buildings that are over 50,000 square feet. Boulder, Colorado, and New York City, New York, have had similar programs in place longer than Seattle has had its program. There are many similarities between all three programs in regards to lowering carbon emissions through building maintenance and upgrades. Each city has specific bench marking goals as per what size of the building and when their specific tune-up should occur. There are also similar concerns from both building owners in regards to the costs of building upgrades versus the benefits that align with improved building performance. Within all three cities, tenants also share similar concerns mostly about increased rent due to having these buildings be improved. Both Boulder, Colorado, and New York City, New York, despite population size or location, have seen dramatic carbon decreases due to their tune-up policies being in effect. This gives great promise that Seattle’s similar tune-up process will also yield positive results. 
    more » « less
  3. Abstract Purpose of ReviewThis review explores the application of classical ecological theory to host-associated microbiomes during initial colonization, maintenance, and recovery. We discuss unique challenges of applying these theories to host-associated microbiomes and host factors to consider going forward. Recent FindingsRecent studies applying community ecology principles to host microbiomes continue to demonstrate a role for both selective and stochastic processes in shaping host-associated microbiomes. However, ecological frameworks developed to describe dynamics during homeostasis do not necessarily apply during diseased or highly perturbed states, where large variations can potentially lead to alternate stable states. SummaryDespite providing valuable insights, the application of ecological theories to host-associated microbiomes has some unique challenges. The integration of host-specific factors, such as genotype or immune dynamics in ecological models or frameworks is crucial for understanding host microbiome assembly and stability, which could improve our ability to predict microbiome outcomes and improve host health. 
    more » « less
  4. Abstract BackgroundDisturbances alter the diversity and composition of microbial communities. Yet a generalized empirical assessment of microbiome responses to disturbance across different environments is needed to understand the factors driving microbiome recovery, and the role of the environment in driving these patterns. ResultsTo this end, we combined null models with Bayesian generalized linear models to examine 86 time series of disturbed mammalian, aquatic, and soil microbiomes up to 50 days following disturbance. Overall, disturbances had the strongest effect on mammalian microbiomes, which lost taxa and later recovered their richness, but not their composition. In contrast, following disturbance, aquatic microbiomes tended away from their pre-disturbance composition over time. Surprisingly, across all environments, we found no evidence of increased compositional dispersion (i.e., variance) following disturbance, in contrast to the expectations of the Anna Karenina Principle. ConclusionsThis is the first study to systematically compare secondary successional dynamics across disturbed microbiomes, using a consistent temporal scale and modeling approach. Our findings show that the recovery of microbiomes is environment-specific, and helps to reconcile existing, environment-specific research into a unified perspective. 
    more » « less
  5. Summary Allelopathy is a common and important stressor that shapes plant communities and can alter soil microbiomes, yet little is known about the direct effects of allelochemical addition on bacterial and fungal communities or the potential for allelochemical‐selected microbiomes to mediate plant performance responses, especially in habitats naturally structured by allelopathy.Here, we present the first community‐wide investigation of microbial mediation of allelochemical effects on plant performance by testing how allelopathy affects soil microbiome structure and how these microbial changes impact germination and productivity across 13 plant species.The soil microbiome exhibited significant changes to ‘core’ bacterial and fungal taxa, bacterial composition, abundance of functionally important bacterial and fungal taxa, and predicted bacterial functional genes after the addition of the dominant allelochemical native to this habitat. Furthermore, plant performance was mediated by the allelochemical‐selected microbiome, with allelopathic inhibition of plant productivity moderately mitigated by the microbiome.Through our findings, we present a potential framework to understand the strength of plant–microbial interactions in the presence of environmental stressors, in which frequency of the ecological stress may be a key predictor of microbiome‐mediation strength. 
    more » « less