Abstract Functional data analysis is an evolving field focused on analyzing data that reveals insights into curves, surfaces, or entities within a continuous domain. This type of data is typically distinguished by the inherent dependence and smoothness observed within each data curve. Traditional functional data analysis approaches have predominantly relied on linear models, which, while foundational, often fall short in capturing the intricate, nonlinear relationships within the data. This paper seeks to bridge this gap by reviewing the integration of deep neural networks into functional data analysis. Deep neural networks present a transformative approach to navigating these complexities, excelling particularly in high‐dimensional spaces and demonstrating unparalleled flexibility in managing diverse data constructs. This review aims to advance functional data regression, classification, and representation by integrating deep neural networks with functional data analysis, fostering a harmonious and synergistic union between these two fields. The remarkable ability of deep neural networks to adeptly navigate the intricate functional data highlights a wealth of opportunities for ongoing exploration and research across various interdisciplinary areas. This article is categorized under:Data: Types and Structure > Time Series, Stochastic Processes, and Functional DataStatistical Learning and Exploratory Methods of the Data Sciences > Deep LearningStatistical Learning and Exploratory Methods of the Data Sciences > Neural Networks
more »
« less
Review on functional data classification
Abstract A fundamental problem in functional data analysis is to classify a functional observation based on training data. The application of functional data classification has gained immense popularity and utility across a wide array of disciplines, encompassing biology, engineering, environmental science, medical science, neurology, social science, and beyond. The phenomenal growth of the application of functional data classification indicates the urgent need for a systematic approach to develop efficient classification methods and scalable algorithmic implementations. Therefore, we here conduct a comprehensive review of classification methods for functional data. The review aims to bridge the gap between the functional data analysis community and the machine learning community, and to intrigue new principles for functional data classification. This article is categorized under:Statistical Learning and Exploratory Methods of the Data Sciences > Clustering and ClassificationStatistical Models > Classification ModelsData: Types and Structure > Time Series, Stochastic Processes, and Functional Data
more »
« less
- Award ID(s):
- 2319342
- PAR ID:
- 10526733
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- WIREs Computational Statistics
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 1939-5108
- Page Range / eLocation ID:
- e1638
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Model calibration is crucial for optimizing the performance of complex computer models across various disciplines. In the era of Industry 4.0, symbolizing rapid technological advancement through the integration of advanced digital technologies into industrial processes, model calibration plays a key role in advancing digital twin technology, ensuring alignment between digital representations and real‐world systems. This comprehensive review focuses on the Kennedy and O'Hagan (KOH) framework (Kennedy and O'Hagan, Journal of the Royal Statistical Society: Series B 2001; 63(3):425–464). In particular, we explore recent advancements addressing the challenges of the unidentifiability issue while accommodating model inadequacy within the KOH framework. In addition, we explore recent advancements in adapting the KOH framework to complex scenarios, including those involving multivariate outputs and functional calibration parameters. We also delve into experimental design strategies tailored to the unique demands of model calibration. By offering a comprehensive analysis of the KOH approach and its diverse applications, this review serves as a valuable resource for researchers and practitioners aiming to enhance the accuracy and reliability of their computer models. This article is categorized under:Statistical Models > Semiparametric ModelsStatistical Models > Simulation ModelsStatistical Models > Bayesian Modelsmore » « less
-
Abstract Change‐point detection studies the problem of detecting the changes in the underlying distribution of the data stream as soon as possible after the change happens. Modern large‐scale, high‐dimensional, and complex streaming data call for computationally (memory) efficient sequential change‐point detection algorithms that are also statistically powerful. This gives rise to a computation versus statistical power trade‐off, an aspect less emphasized in the past in classic literature. This tutorial takes this new perspective and reviews several sequential change‐point detection procedures, ranging from classic sequential change‐point detection algorithms to more recent non‐parametric procedures that consider computation, memory efficiency, and model robustness in the algorithm design. Our survey also contains classic performance analysis, which provides useful techniques for analyzing new procedures. This article is categorized under:Statistical Models > Time Series ModelsAlgorithms and Computational Methods > AlgorithmsData: Types and Structure > Time Series, Stochastic Processes, and Functional Datamore » « less
-
Abstract The biodiversity crisis necessitates spatially extensive methods to monitor multiple taxonomic groups for evidence of change in response to evolving environmental conditions. Programs that combine passive acoustic monitoring and machine learning are increasingly used to meet this need. These methods require large, annotated datasets, which are time‐consuming and expensive to produce, creating potential barriers to adoption in data‐ and funding‐poor regions. Recently released pre‐trained avian acoustic classification models provide opportunities to reduce the need for manual labelling and accelerate the development of new acoustic classification algorithms through transfer learning. Transfer learning is a strategy for developing algorithms under data scarcity that uses pre‐trained models from related tasks to adapt to new tasks.Our primary objective was to develop a transfer learning strategy using the feature embeddings of a pre‐trained avian classification model to train custom acoustic classification models in data‐scarce contexts. We used three annotated avian acoustic datasets to test whether transfer learning and soundscape simulation‐based data augmentation could substantially reduce the annotated training data necessary to develop performant custom acoustic classifiers. We also conducted a sensitivity analysis for hyperparameter choice and model architecture. We then assessed the generalizability of our strategy to increasingly novel non‐avian classification tasks.With as few as two training examples per class, our soundscape simulation data augmentation approach consistently yielded new classifiers with improved performance relative to the pre‐trained classification model and transfer learning classifiers trained with other augmentation approaches. Performance increases were evident for three avian test datasets, including single‐class and multi‐label contexts. We observed that the relative performance among our data augmentation approaches varied for the avian datasets and nearly converged for one dataset when we included more training examples.We demonstrate an efficient approach to developing new acoustic classifiers leveraging open‐source sound repositories and pre‐trained networks to reduce manual labelling. With very few examples, our soundscape simulation approach to data augmentation yielded classifiers with performance equivalent to those trained with many more examples, showing it is possible to reduce manual labelling while still achieving high‐performance classifiers and, in turn, expanding the potential for passive acoustic monitoring to address rising biodiversity monitoring needs.more » « less
-
ABSTRACT With renewable energy being aggressively integrated into the grid, energy supplies are becoming vulnerable to weather and the environment, and are often incapable of meeting population demands at a large scale if not accurately predicted for energy planning. Understanding consumers' power demands ahead of time and the influences of weather on consumption and generation can help producers generate effective power management plans to support the target demand. In addition to the high correlation with the environment, consumers' behaviors also cause non‐stationary characteristics of energy data, which is the main challenge for energy prediction. In this survey, we perform a review of the literature on prediction methods in the energy field. So far, most of the available research encompasses one type of generation or consumption. There is no research approaching prediction in the energy sector as a whole and its correlated features. We propose to address the energy prediction challenges from both consumption and generation sides, encompassing techniques from statistical to machine learning techniques. We also summarize the work related to energy prediction, electricity measurements, challenges related to energy consumption and generation, energy forecasting methods, and real‐world energy forecasting resources, such as datasets and software solutions for energy prediction. This article is categorized under:Application Areas > Industry Specific ApplicationsTechnologies > PredictionTechnologies > Machine Learningmore » « less
An official website of the United States government

