We introduce threshold growth in the classical threshold contagion model, or equivalently a network of Cramér-Lundberg processes in which nodes have downward jumps when there is a failure of a neighboring node. Choosing the configuration model as underlying graph, we prove fluid limits for the baseline model, as well as extensions to the directed case, state-dependent interarrival times and the case of growth driven by upward jumps. We obtain explicit ruin probabilities for the nodes according to their characteristics: initial threshold and in- (and out-) degree. We then allow nodes to choose their connectivity by trading off link benefits and contagion risk. We define a rational equilibrium concept in which nodes choose their connectivity according to an expected failure probability of any given link and then impose condition that the expected failure probability coincides with the actual failure probability under the optimal connectivity. We show existence of an asymptotic equilibrium and convergence of the sequence of equilibria on the finite networks. In particular, our results show that systems with higher overall growth may have higher failure probability in equilibrium.
more »
« less
Long ties accelerate noisy threshold-based contagions
In widely used models of biological contagion, interventions that randomly rewire edges (generally making them 'longer') accelerate spread. However, recent work has argued that highly clustered, rather than random, networks facilitate the spread of threshold-based contagions, such as those motivated by myopic best response for adoption of new innovations, norms and products in games of strategic complement. Here we show that minor modifications to this model reverse this result, thereby harmonizing qualitative facts about how network structure affects contagion. We analyse the rate of spread over circular lattices with rewired edges and show that having a small probability of adoption below the threshold probability is enough to ensure that random rewiring accelerates the spread of a noisy threshold-based contagion. This conclusion is verified in simulations of empirical networks and remains valid with partial but frequent enough rewiring and when adoption decisions are reversible but infrequently so, as well as in high-dimensional lattice structures.
more »
« less
- Award ID(s):
- 2318844
- PAR ID:
- 10526758
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- Nature Human Behaviour
- Volume:
- 8
- Issue:
- 6
- ISSN:
- 2397-3374
- Page Range / eLocation ID:
- 1057 to 1064
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Neighborhood effects have an important role in evacuation decision-making by a family. Owing to peer influence, neighbors evacuating can motivate a family to evacuate. Paradoxically, if a lot of neighbors evacuate, then the likelihood of an individual or family deciding to evacuate decreases, for fear of crime and looting. Such behavior cannot be captured using standard models of contagion spread on networks, e.g., threshold, independent cascade, and linear threshold models. Here, we propose a new threshold-based graph dynamical system model, 2mode-threshold, which captures this dichotomy. We study theoretically the dynamical properties of 2mode-threshold in different networks, and find significant differences from a standard threshold model. We build and characterize small world networks of Virginia Beach, VA, where nodes are geolocated families (households) in the city and edges are interactions between pairs of families. We demonstrate the utility of our behavioral model through agent-based simulations on these small world networks. We use it to understand evacuation rates in this region, and to evaluate the effects of modeling parameters on evacuation decision dynamics. Specifically, we quantify the effects of (1) network generation parameters, (2) stochasticity in the social network generation process, (3) model types (2mode-threshold vs. standard threshold models), (4) 2mode-threshold model parameters, (5) and initial conditions, on computed evacuation rates and their variability. An illustrative example result shows that the absence of looting effect can overpredict evacuation rates by as much as 50%.more » « less
-
null (Ed.)Neighborhood eects have an important role in evacuation decision-making by a family. Owing to peer influence, neighbors evacuating can motivate a family to evacuate. Paradoxically, if a lot of neighbors evacuate, then the likelihood of an individual or family deciding to evacuate decreases, for fear of crime and looting. Such behavior cannot be captured using standard models of contagion spread on networks, e.g., threshold, independent cascade, and linear threshold models. Here, we propose a new threshold-based graph dynamical system model, 2mode-threshold, which captures this dichotomy. We study theoretically the dynamical properties of 2mode-threshold in different networks, and fi nd signi ficant differences from a standard threshold model. We build and characterize small world networks of Virginia Beach, VA, where nodes are geolocated families (households) in the city and edges are interactions between pairs of families. We demonstrate the utility of our behavioral model through agent-based simulations on these small world networks. We use it to understand evacuation rates in this region, and to evaluate the effects of modeling parameters on evacuation decision dynamics. Speci fically, we quantify the effects of (i) network generation parameters, (ii) stochasticity in the social network generation process, (iii) model types (2mode-threshold vs. stan- dard threshold models), (iv) 2mode-threshold model parameters, (v) and initial conditions, on computed evacuation rates and their variability. An illustrative example result shows that the absence of looting eect can overpredict evacuation rates by as much as 50%.more » « less
-
Nonpharmaceutical interventions (NPIs) such as mask wearing can be effective in mitigating the spread of infectious diseases. Therefore, understanding the behavioral dynamics of NPIs is critical for characterizing the dynamics of disease spread. Nevertheless, standard infection models tend to focus only on disease states, overlooking the dynamics of “beneficial contagions,” e.g., compliance with NPIs. In this work, we investigate the concurrent spread of disease and mask-wearing behavior over multiplex networks. Our proposed framework captures both the competing and complementary relationships between the dueling contagion processes. Further, the model accounts for various behavioral mechanisms that influence mask wearing, such as peer pressure and fear of infection. Our results reveal that under the coupled disease–behavior dynamics, the attack rate of a disease—as a function of transition probability—exhibits a critical transition. Specifically, as the transmission probability exceeds a critical threshold, the attack rate decreases abruptly due to sustained mask-wearing responses. We empirically explore the causes of the critical transition and demonstrate the robustness of the observed phenomena. Our results highlight that without proper enforcement of NPIs, reductions in the disease transmission probability via other interventions may not be sufficient to reduce the final epidemic size.more » « less
-
Abstract—There are myriad real-life examples of contagion processes on human social networks, e.g., spread of viruses, information, and social unrest. Also, there are many methods to control or block contagion spread. In this work, we introduce a novel method of blocking contagions that uses nodes from dominating sets (DSs). To our knowledge, this is the first use of DS nodes to block contagions. Finding minimum dominating sets of graphs is an NP-Complete problem, so we generalize a well-known heuristic, enabling us to customize its execution. Our method produces a prioritized list of dominating nodes, which is, in turn, a prioritized list of blocking nodes. Thus, for a given network, we compute this list of blocking nodes and we use it to block contagions for all blocking node budgets, contagion seed sets, and parameter values of the contagion model. We report on computational experiments of the blocking efficacy of our approach using two mined networks. We also demonstrate the effectiveness of our approach by comparing blocking results with those from the high degree heuristic, which is a common standard in blocking studies. Index Terms—contagion blocking, dominating sets, threshold models, social networks, simulation, high degree heuristicmore » « less
An official website of the United States government

