skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: What Does it Mean to be Literate in the Time of AI? Different Perspectives on Learning and Teaching AI Literacies in K-12 Education.
Award ID(s):
2214463
PAR ID:
10526804
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
ICLS
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The proliferation of Artificial Intelligence (AI) models such as Generative Adversarial Networks (GANs) has shown impressive success in image synthesis. Artificial GAN-based synthesized images have been widely spread over the Internet with the advancement in generating naturalistic and photo-realistic images. This might have the ability to improve content and media; however, it also constitutes a threat with regard to legitimacy, authenticity, and security. Moreover, implementing an automated system that is able to detect and recognize GAN-generated images is significant for image synthesis models as an evaluation tool, regardless of the input modality. To this end, we propose a framework for reliably detecting AI-generated images from real ones through Convolutional Neural Networks (CNNs). First, GAN-generated images were collected based on different tasks and different architectures to help with the generalization. Then, transfer learning was applied. Finally, several Class Activation Maps (CAM) were integrated to determine the discriminative regions that guided the classification model in its decision. Our approach achieved 100% on our dataset, i.e., Real or Synthetic Images (RSI), and a superior performance on other datasets and configurations in terms of its accuracy. Hence, it can be used as an evaluation tool in image generation. Our best detector was a pre-trained EfficientNetB4 fine-tuned on our dataset with a batch size of 64 and an initial learning rate of 0.001 for 20 epochs. Adam was used as an optimizer, and learning rate reduction along with data augmentation were incorporated. 
    more » « less
  2. null (Ed.)
  3. With the rapid development of decision aids that are driven by AI models, the practice of AI-assisted decision making has become increasingly prevalent. To improve the human-AI team performance in decision making, earlier studies mostly focus on enhancing humans' capability in better utilizing a given AI-driven decision aid. In this paper, we tackle this challenge through a complementary approach—we aim to train behavior-aware AI by adjusting the AI model underlying the decision aid to account for humans' behavior in adopting AI advice. In particular, as humans are observed to accept AI advice more when their confidence in their own judgement is low, we propose to train AI models with a human-confidence-based instance weighting strategy, instead of solving the standard empirical risk minimization problem. Under an assumed, threshold-based model characterizing when humans will adopt the AI advice, we first derive the optimal instance weighting strategy for training AI models. We then validate the efficacy and robustness of our proposed method in improving the human-AI joint decision making performance through systematic experimentation on synthetic datasets. Finally, via randomized experiments with real human subjects along with their actual behavior in adopting the AI advice, we demonstrate that our method can significantly improve the decision making performance of the human-AI team in practice. 
    more » « less