The proliferation of Artificial Intelligence (AI) models such as Generative Adversarial Networks (GANs) has shown impressive success in image synthesis. Artificial GAN-based synthesized images have been widely spread over the Internet with the advancement in generating naturalistic and photo-realistic images. This might have the ability to improve content and media; however, it also constitutes a threat with regard to legitimacy, authenticity, and security. Moreover, implementing an automated system that is able to detect and recognize GAN-generated images is significant for image synthesis models as an evaluation tool, regardless of the input modality. To this end, we propose a framework for reliably detecting AI-generated images from real ones through Convolutional Neural Networks (CNNs). First, GAN-generated images were collected based on different tasks and different architectures to help with the generalization. Then, transfer learning was applied. Finally, several Class Activation Maps (CAM) were integrated to determine the discriminative regions that guided the classification model in its decision. Our approach achieved 100% on our dataset, i.e., Real or Synthetic Images (RSI), and a superior performance on other datasets and configurations in terms of its accuracy. Hence, it can be used as an evaluation tool in image generation. Our best detector was a pre-trained EfficientNetB4 fine-tuned on our dataset with a batch size of 64 and an initial learning rate of 0.001 for 20 epochs. Adam was used as an optimizer, and learning rate reduction along with data augmentation were incorporated.
This content will become publicly available on June 18, 2025
- Award ID(s):
- 2214463
- PAR ID:
- 10526804
- Publisher / Repository:
- ICLS
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Various forms of artificial intelligence (AI) applications are being deployed and used in many healthcare systems. As the use of these applications increases, we are learning the failures of these models and how they can perpetuate bias. With these new lessons, we need to prioritize bias evaluation and mitigation for radiology applications; all the while not ignoring the impact of changes in the larger enterprise AI deployment which may have downstream impact on performance of AI models. In this paper, we provide an updated review of known pitfalls causing AI bias and discuss strategies for mitigating these biases within the context of AI deployment in the larger healthcare enterprise. We describe these pitfalls by framing them in the larger AI lifecycle from problem definition, data set selection and curation, model training and deployment emphasizing that bias exists across a spectrum and is a sequela of a combination of both human and machine factors.