We report the seminal experimental isolation and DFT characterization of pristine [5,5] C130-D5h(1) fullertubes. This achievement represents the largest soluble carbon molecule obtained in pristine form. The [5,5] C130 species is the highest aspect ratio fullertube purified to date and now surpasses the recent gigantic [5,5] C120-D5d(1). In contrast to C90, C100, and C120 fullertubes, the longer C130-D5h has more nanotubular carbons (70) than end-cap fullerenyl atoms (60). Starting from 39,393 possible C130 isolated pentagon rule (IPR) structures and after analyzing polarizability, retention time, and UV-vis spectra, these three layers of data remarkably predict a single candidate isomer and fullertube, [5,5] C130-D5h(1). This structural assignment is augmented by atomic resolution STEM data showing distinctive and tubular “pill-like” structures with diameters and aspect ratios consistent with [5,5] C130-D5h(1) fullertubes. The high selectivity of the aminopropanol reaction with spheroidal fullerenes permits a facile separation and removal of fullertubes from soot extracts. Experimental analyses (HPLC retention time, UV-vis, and STEM) were synergistically used (with polarizability and DFT property calculations) to down select and confirm the C130 fullertube structure. Achieving the isolation of a new [5,5] C130-D5h fullertube opens the door to application development and fundamental studies of electron confinement, fluorescence, and metallic character for a fullertube series of molecules with systematic tubular elongation. This [5,5] fullertube family also invites comparative studies with single-walled carbon nanotubes (SWCNTs), nanohorns (SWCNHs), and fullerenes.
more »
« less
Anisotropic Contributions in the Chromatographic Elution Behavior of Fullerenes and Fullertubes
The retention behavior of fullerenes and fullertubes on a PYE column in reversed-phase chromatography was investigated to clarify the influence of their shapes on the separation process. The impact of anisotropy was further elucidated using a pair potential interaction model, together with experimental data and ab initio calculations, to evaluate its contribution to various parameters characterizing the interaction models. The findings indicate that the shape of fullerenes plays a more significant role than anticipated in the retention mechanisms, highlighting the necessity of considering the shape of fullerenes and fullertubes to accurately predict their retention times. Furthermore, a phenomenological pair potential was devised to demonstrate the feasibility of precisely predicting the retention times of fullerenes and fullertubes through first-principles calculations, regardless of their shape. The existence of such a model paves the way for the development of a method to identify isomers of fullerenes from minute amounts of sample.
more »
« less
- Award ID(s):
- 2247272
- PAR ID:
- 10526832
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry C
- ISSN:
- 1932-7447
- Subject(s) / Keyword(s):
- Carbon Carbon Nanomaterials Molecules Nanospheres Polarizability
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Fullertubes are tubular fullerenes with nanotube-like middle section and fullerene-like endcaps. To understand how this intermediate form between spherical fullerenes and nanotubes is reflected in the vibrational modes, we performed comprehensive studies of IR and Raman spectra of fullertubes C90-D5h, C96-D3d, and C100-D5d. An excellent agreement between experimental and DFT-computed spectra enabled a detailed vibrational assignment and allowed an analysis of the localization degree of the vibrational modes in different parts of fullertubes. Projection analysis was performed to establish an exact numerical correspondence between vibrations of the belt midsection and fullerene headcaps to the modes of nanotubes and fullerene C60-Ih. As a result, we could not only identify fullerene-like and CNT-like vibrations of fullertubes, but also trace their origin in specific vibrational modes of CNT and C60-Ih. IR spectra were found to be dominated by vibrations of fullerene-like caps resembling IR-active modes of C60-Ih, whereas in Raman spectra both caps and belt vibrations are found to be equally active. Unlike the resonance Raman spectra of CNTs, in which only two single-phonon bands are detected, the Raman spectra of fullertubes exhibit several CNT-like vibrations and thus provide additional information on nanotube phonons.more » « less
-
Mycobacterium tuberculosis and nontuberculous mycobacteria such as Mycobacterium abscessus cause diseases that are becoming increasingly difficult to treat due to emerging antibiotic resistance. The development of new antimicrobial molecules is vital for combating these pathogens. Carbon nanomaterials (CNMs) are a class of carbon-containing nanoparticles with promising antimicrobial effects. Fullertubes (C90) are novel carbon allotropes with a structure unique among CNMs. The effects of fullertubes on any living cell have not been studied. In this study, we demonstrate that pristine fullertube dispersions show antimicrobial effects on Mycobacterium smegmatis and M. abscessus. Using scanning electron microscopy, light microscopy, and molecular probes, we investigated the effects of these CNMs on mycobacterial cell viability, cellular integrity, and biofilm formation. C90 fullertubes at 1 µM inhibited mycobacterial viability by 97%. Scanning electron microscopy revealed that the cell wall structure of M. smegmatis and M. abscessus was severely damaged within 24 h of exposure to fullertubes. Additionally, exposure to fullertubes nearly abrogated the acid-fast staining property of M. smegmatis. Using SYTO-9 and propidium iodide, we show that exposure to the novel fullertubes compromises the integrity of the mycobacterial cell. We also show that the permeability of the mycobacterial cell wall was increased after exposure to fullertubes from our assays utilizing the molecular probe dichlorofluorescein and ethidium bromide transport. C90 fullertubes at 0.37 µM and C60 fullerenes at 0.56 µM inhibited pellicle biofilm formation by 70% and 90%, respectively. This is the first report on the antimycobacterial activities of fullertubes and fullerenes.more » « less
-
Abstract Fullertubes, that is, fullerenes consisting of a carbon nanotube moiety capped by hemifullerene ends, are emerging carbon nanomaterials whose properties show both fullerene and carbon nanotube (CNT) traits. Albeit it may be expected that their electronic states show a certain resemblance to those of the extended nanotube, such a correlation has not yet been found or described. Here it shows a scanning tunneling microscopy (STM) and spectroscopy (STS) characterization of the adsorption, self‐assembly, and electronic structure of 2D arrays of [5,5]‐C90fullertube molecules on two different noble metal surfaces, Ag(111) and Au(111). The results demonstrate that the shape of the molecular orbitals of the adsorbed fullertubes corresponds closely to those expected for isolated species on the grounds of density functional theory calculations. Moreover, a comparison between the electronic density profiles in the bands of the extended [5,5]‐CNT and in the molecules reveals that some of the frontier orbitals of the fullertube molecules can be described as the result of the quantum confinement imposed by the hemifullerene caps to the delocalized band states in the extended CNT. The results thus provide a conceptual framework for the rational design of custom fullertube molecules and can potentially become a cornerstone in the understanding of these new carbon nanoforms.more » « less
-
Abstract A new isolation protocol was recently reported for highly purified metallic FullertubesD5h‐C90,D3d‐C96, andD5d‐C100,which exhibit unique electronic features. Here, we report the oxygen reduction electrocatalytic behavior of C60, C70(spheroidal fullerenes), and C90, C96, and C100(tubular fullerenes) using a combination of experimental and theoretical approaches. C96(a metal‐free catalyst) displayed remarkable oxygen reduction reaction (ORR) activity, with an onset potential of 0.85 V and a halfway potential of 0.75 V, which are close to the state‐of‐the‐art Pt/C benchmark catalyst values. We achieved an excellent power density of 0.75 W cm−2using C96as a modified cathode in a proton‐exchange membrane fuel cell, comparable to other recently reported efficient metal‐free catalysts. Combined band structure (experimentally calculated) and free‐energy (DFT) investigations show that both favorable energy‐level alignment active catalytic sites on the carbon cage are responsible for the superior activity of C96.more » « less
An official website of the United States government

