skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fullertubes inhibit mycobacterial viability and prevent biofilm formation by disrupting the cell wall
Mycobacterium tuberculosis and nontuberculous mycobacteria such as Mycobacterium abscessus cause diseases that are becoming increasingly difficult to treat due to emerging antibiotic resistance. The development of new antimicrobial molecules is vital for combating these pathogens. Carbon nanomaterials (CNMs) are a class of carbon-containing nanoparticles with promising antimicrobial effects. Fullertubes (C90) are novel carbon allotropes with a structure unique among CNMs. The effects of fullertubes on any living cell have not been studied. In this study, we demonstrate that pristine fullertube dispersions show antimicrobial effects on Mycobacterium smegmatis and M. abscessus. Using scanning electron microscopy, light microscopy, and molecular probes, we investigated the effects of these CNMs on mycobacterial cell viability, cellular integrity, and biofilm formation. C90 fullertubes at 1 µM inhibited mycobacterial viability by 97%. Scanning electron microscopy revealed that the cell wall structure of M. smegmatis and M. abscessus was severely damaged within 24 h of exposure to fullertubes. Additionally, exposure to fullertubes nearly abrogated the acid-fast staining property of M. smegmatis. Using SYTO-9 and propidium iodide, we show that exposure to the novel fullertubes compromises the integrity of the mycobacterial cell. We also show that the permeability of the mycobacterial cell wall was increased after exposure to fullertubes from our assays utilizing the molecular probe dichlorofluorescein and ethidium bromide transport. C90 fullertubes at 0.37 µM and C60 fullerenes at 0.56 µM inhibited pellicle biofilm formation by 70% and 90%, respectively. This is the first report on the antimycobacterial activities of fullertubes and fullerenes.  more » « less
Award ID(s):
2247272
PAR ID:
10526853
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Cell Biochemistry and Function
Volume:
42
Issue:
2
ISSN:
0263-6484
Subject(s) / Keyword(s):
Fullertubes fullerenes mycobacteria cell wall biofilm
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Antibiotic resistance in bacteria is typically conferred by proteins that function as efflux pumps or enzymes that modify either the drug or the antibiotic target. Here we report an unusual mechanism of resistance to macrolide-lincosamide antibiotics mediated by mycobacterial HflX, a conserved ribosome-associated GTPase. We show that deletion of the hflX gene in the pathogenic Mycobacterium abscessus , as well as the nonpathogenic Mycobacterium smegmatis , results in hypersensitivity to the macrolide-lincosamide class of antibiotics. Importantly, the level of resistance provided by Mab_hflX is equivalent to that conferred by erm41 , implying that hflX constitutes a significant resistance determinant in M. abscessus . We demonstrate that mycobacterial HflX associates with the 50S ribosomal subunits in vivo and can dissociate purified 70S ribosomes in vitro, independent of GTP hydrolysis. The absence of HflX in a ΔMs_hflX strain also results in a significant accumulation of 70S ribosomes upon erythromycin exposure. Finally, a deletion of either the N-terminal or the C-terminal domain of HflX abrogates ribosome splitting and concomitantly abolishes the ability of mutant proteins to mediate antibiotic tolerance. Together, our results suggest a mechanism of macrolide-lincosamide resistance in which the mycobacterial HflX dissociates antibiotic-stalled ribosomes and rescues the bound mRNA. Given the widespread presence of hflX genes, we anticipate this as a generalized mechanism of macrolide resistance used by several bacteria. 
    more » « less
  2. Rationale: The prevalence of nontuberculous mycobacterial (NTM) pulmonary disease varies geographically in the United States (U.S.). Previous studies indicate that the presence of certain water-quality constituents in source water increase NTM infection risk. Objective: To identify water-quality constituents that influence the risk of NTM pulmonary infection in persons with cystic fibrosis (pwCF) in the U.S. Methods: We conducted a population-based case-control study using NTM incidence data collected from the Cystic Fibrosis Foundation Patient Registry (CFFPR) during 2010-2019. We linked patient zip code to county and associated patient county of residence with surface water data extracted from the Water Quality Portal. We used logistic regression models to estimate odds of NTM infection as a function of water-quality constituents. We modeled two outcomes: pulmonary infection due to Mycobacterium avium complex (MAC) and Mycobacterium abscessus species. Results: We identified 484 MAC cases, 222 M. abscessus cases and 2816 NTM-negative CF controls resident in 11 states. In multivariable models, we found that for every 1-standardized unit increase in the log concentration of sulfate and vanadium in surface water at the county level, the odds of infection increased by 39% and 21%, respectively, among pwCF with MAC compared with CF-NTM-negative controls. When modeling M. abscessus as the dependent variable, every 1-standardized unit increase in the log concentration of molybdenum increased the odds of infection by 36%. Conclusions: These findings suggest that naturally-occurring and anthropogenic water-quality constituents may influence the NTM abundance in water sources that supply municipal water systems, thereby increasing MAC and M. abscessus infection risk. 
    more » « less
  3. Abstract Fullertubes, that is, fullerenes consisting of a carbon nanotube moiety capped by hemifullerene ends, are emerging carbon nanomaterials whose properties show both fullerene and carbon nanotube (CNT) traits. Albeit it may be expected that their electronic states show a certain resemblance to those of the extended nanotube, such a correlation has not yet been found or described. Here it shows a scanning tunneling microscopy (STM) and spectroscopy (STS) characterization of the adsorption, self‐assembly, and electronic structure of 2D arrays of [5,5]‐C90fullertube molecules on two different noble metal surfaces, Ag(111) and Au(111). The results demonstrate that the shape of the molecular orbitals of the adsorbed fullertubes corresponds closely to those expected for isolated species on the grounds of density functional theory calculations. Moreover, a comparison between the electronic density profiles in the bands of the extended [5,5]‐CNT and in the molecules reveals that some of the frontier orbitals of the fullertube molecules can be described as the result of the quantum confinement imposed by the hemifullerene caps to the delocalized band states in the extended CNT. The results thus provide a conceptual framework for the rational design of custom fullertube molecules and can potentially become a cornerstone in the understanding of these new carbon nanoforms. 
    more » « less
  4. Carbon-based functional nanocomposites have emerged as potent antimicrobial agents and can be exploited as a viable option to overcome antibiotic resistance of bacterial strains. In the present study, graphitic carbon nitride nanosheets are prepared by controlled calcination of urea. Spectroscopic measurements show that the nanosheets consist of abundant carbonyl groups and exhibit apparent photocatalytic activity under UV photoirradiation towards the selective production of singlet oxygen. Therefore, the nanosheets can effectively damage the bacterial cell membranes and inhibit the growth of bacterial cells, such as Gram-negative Escherichia coli, as confirmed in photodynamic, fluorescence microscopy, and scanning electron microscopy measurements. The results from this research highlight the unique potential of carbon nitride derivatives as potent antimicrobial agents. 
    more » « less
  5. Singh, Yogendra (Ed.)
    ABSTRACT Dynamical properties of gene regulatory networks are tuned to ensure bacterial survival. In mycobacteria, the MprAB-σ E network responds to the presence of stressors, such as surfactants that cause surface stress. Positive feedback loops in this network were previously predicted to cause hysteresis, i.e., different responses to identical stressor levels for prestressed and unstressed cells. Here, we show that hysteresis does not occur in nonpathogenic Mycobacterium smegmatis but does occur in Mycobacterium tuberculosis . However, the observed rapid temporal response in M. tuberculosis is inconsistent with the model predictions. To reconcile these observations, we implement a recently proposed mechanism for stress sensing, namely, the release of MprB from the inhibitory complex with the chaperone DnaK upon the stress exposure. Using modeling and parameter fitting, we demonstrate that this mechanism can accurately describe the experimental observations. Furthermore, we predict perturbations in DnaK expression that can strongly affect dynamical properties. Experiments with these perturbations agree with model predictions, confirming the role of DnaK in fast and sustained response. IMPORTANCE Gene regulatory networks controlling stress response in mycobacterial species have been linked to persistence switches that enable bacterial dormancy within a host. However, the mechanistic basis of switching and stress sensing is not fully understood. In this paper, combining quantitative experiments and mathematical modeling, we uncover how interactions between two master regulators of stress response—the MprAB two-component system (TCS) and the alternative sigma factor σ E —shape the dynamical properties of the surface stress network. The result show hysteresis (history dependence) in the response of the pathogenic bacterium M. tuberculosis to surface stress and lack of hysteresis in nonpathogenic M. smegmatis . Furthermore, to resolve the apparent contradiction between the existence of hysteresis and fast activation of the response, we utilize a recently proposed role of chaperone DnaK in stress sensing. These result leads to a novel system-level understanding of bacterial stress response dynamics. 
    more » « less