skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 1, 2025

Title: Photocatalytic Generation of Singlet Oxygen by Graphitic Carbon Nitride for Antibacterial Applications
Carbon-based functional nanocomposites have emerged as potent antimicrobial agents and can be exploited as a viable option to overcome antibiotic resistance of bacterial strains. In the present study, graphitic carbon nitride nanosheets are prepared by controlled calcination of urea. Spectroscopic measurements show that the nanosheets consist of abundant carbonyl groups and exhibit apparent photocatalytic activity under UV photoirradiation towards the selective production of singlet oxygen. Therefore, the nanosheets can effectively damage the bacterial cell membranes and inhibit the growth of bacterial cells, such as Gram-negative Escherichia coli, as confirmed in photodynamic, fluorescence microscopy, and scanning electron microscopy measurements. The results from this research highlight the unique potential of carbon nitride derivatives as potent antimicrobial agents.  more » « less
Award ID(s):
2003685
PAR ID:
10530396
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Materials
Volume:
17
Issue:
15
ISSN:
1996-1944
Page Range / eLocation ID:
3787
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Design and engineering of graphene-based functional nanomaterials for effective antimicrobial applications has been attracting extensive interest. In the present study, graphene oxide quantum dots (GOQDs) were prepared by chemical exfoliation of carbon fibers and exhibited apparent antimicrobial activity. Transmission electron microscopic measurements showed that the lateral length ranged from a few tens to a few hundred nanometers. Upon reduction by sodium borohydride, whereas the UV-vis absorption profile remained largely unchanged, steady-state photoluminescence measurements exhibited a marked blue-shift and increase in intensity of the emission, due to (partial) removal of phenanthroline-like structural defects within the carbon skeletons. Consistent results were obtained in Raman and time-resolved photoluminescence measurements. Interestingly, the samples exhibited apparent, but clearly different, antimicrobial activity against Staphylococcus epidermidis cells. In the dark and under photoirradiation (400 nm), the as-produced GOQDs exhibited markedly higher cytotoxicity than the chemically reduced counterparts, likely because of (i) effective removal by NaBH 4 reduction of redox-active phenanthroline-like moieties that interacted with the electron-transport chain of the bacterial cells, and (ii) diminished production of hydroxyl radicals that were potent bactericidal agents after chemical reduction as a result of increased conjugation within the carbon skeletons. 
    more » « less
  2. From a library of compounds, 11 hit antibacterial agents have been identified as potent anti-Gram-positive bacterial agents. These pyrazole derivatives are active against two groups of pathogens, staphylococci and enterococci, with minimum inhibitory concentration (MIC) values as low as 0.78 μg/mL. These potent compounds showed bactericidal action, and some were effective at inhibiting and eradicating Staphylococcus aureus and Enterococcus faecalis biofilms. Real-time biofilm inhibition by the potent compounds was studied, by using Bioscreen C. These lead compounds were also very potent against S. aureus persisters as compared to controls, gentamycin and vancomycin. In multiple passage studies, bacteria developed little resistance to these compounds (no more than 2 × MIC). The plausible mode of action of the lead compounds is the permeabilization of the cell membrane determined by flow cytometry and protein leakage assays. With the detailed antimicrobial studies, both in planktonic and biofilm contexts, some of these potent compounds have the potential for further antimicrobial drug development. 
    more » « less
  3. Abstract Hypergolic reactions have emerged as a new synthetic approach enabling the rapid production of a diverse set of materials at ambient conditions. While hypergolic reactions bear several similarities to the well-established flame spray pyrolysis (FSP), the former has only recently been demonstrated as a viable approach to materials synthesis. Here we demonstrate a new pathway to 2D materials using hypergolic reactions and expand the gallery of nanomaterials synthesized hypergolically. More specifically, we demonstrate that ammonia borane complex, NH3BH3, or 4-fluoroaniline can react hypergolically with fuming nitric acid to form hexagonal boron nitride/fluorinated carbon nanosheets, respectively. Structural and chemical features were confirmed with x-ray diffraction, infrared, Raman, XPS spectroscopies and N2porosimetry measurements. Electron microscopy (SEM and TEM) along with atomic force microscopy (AFM) were used to characterize the morphology of the materials. Finally, we applied Hansen affinity parameters to quantify the surface/interfacial properties using their dispersibility in solvents. Of the solvents tested, ethylene glycol and ethanol exhibited the most stable dispersions of hexagonal boron nitride (h-BN). With respect to fluorinated carbon (FC) nanosheets, the suitable solvents for high stability dispersions were dimethylsulfoxide and 2-propanol. The dispersibility was quantified in terms of Hansen affinity parameters (δdph) = (16.6, 8.2, 21.3) and (17.4, 10.1, 14.5) MPa1/2for h-BN and FC, respectively. 
    more » « less
  4. Abstract The World Health Organization has described the antimicrobial resistance crisis as one of the top ten global public health threats. New antimicrobial agents that can fight infections caused by antimicrobial resistant pathogens are therefore needed. A potential strategy is the development of small molecules that can selectively interact with bacterial membranes (or membranes of other microbial pathogens), and thereby rapidly kill the bacteria. Here, we report the structure‐activity relationship within a group of 22 compounds that were designed to bind the bacterial lipid phosphatidylethanolamine (PE). Liposome‐based studies reveal that the lipophilicity of the compounds has the strongest effect on both the affinity and selectivity for PE. The best results were obtained for compounds with logP≈3.75, which showed a 5x–7x selectivity for bacterial PE lipids over human PC (phosphatidylcholine) lipids. Furthermore, these compounds also showed potent antibacterial activity against the Gram‐positive bacteriumB. cereus, with minimum inhibitory concentrations (MICs) below 10 μM, a concentration where they showed minimal hemolytic activity against human red blood cells. These results not only show the possibility of PE‐binding small molecules to function as antibiotics, but also provide guidelines for the development of compounds targeting other types of biologically relevant membrane lipids. 
    more » « less
  5. Abstract Conventional β‐lactam antibiotics are resisted by bacteria at an increasing rate, prompting studies into the development of alternate antibiotic agents. In this personal account, we summarize recent progress in the design and engineering of graphene oxide quantum dot‐based nanomaterials as potent antimicrobial agents. Specifically, we examine the impacts of chemical reduction on the antimicrobial activity of graphene oxide quantum dots, and enhancement of the bactericidal performance by the formation of nanocomposites with metal oxide nanoparticles, within the context of photodynamic generation of reactive oxygen species. A perspective is also included where the promises and challenges are highlighted in the development of high‐performance antimicrobial agents based on graphene derivatives. 
    more » « less