The advanced capabilities of Large Language Models (LLMs) have made them invaluable across various applications, from conversational agents and content creation to data analysis, research, and innovation. However, their effectiveness and accessibility also render them susceptible to abuse for generating malicious content, including phishing attacks. This study explores the potential of using four popular commercially available LLMs, i.e., ChatGPT (GPT 3.5 Turbo), GPT 4, Claude, and Bard, to generate functional phishing attacks using a series of malicious prompts. We discover that these LLMs can generate both phishing websites and emails that can convincingly imitate well-known brands and also deploy a range of evasive tactics that are used to elude detection mechanisms employed by anti-phishing systems. These attacks can be generated using unmodified or "vanilla" versions of these LLMs without requiring any prior adversarial exploits such as jailbreaking. We evaluate the performance of the LLMs towards generating these attacks and find that they can also be utilized to create malicious prompts that, in turn, can be fed back to the model to generate phishing scams - thus massively reducing the prompt-engineering effort required by attackers to scale these threats. As a countermeasure, we build a BERT-based automated detection tool that can be used for the early detection of malicious prompts to prevent LLMs from generating phishing content. Our model is transferable across all four commercial LLMs, attaining an average accuracy of 96% for phishing website prompts and 94% for phishing email prompts. We also disclose the vulnerabilities to the concerned LLMs, with Google acknowledging it as a severe issue. Our detection model is available for use at Hugging Face, as well as a ChatGPT Actions plugin.
more »
« less
Prompt Wrangling: On Replication and Generalization in Large Language Models for PCG Levels
The ChatGPT4PCG competition calls for participants to submit inputs to ChatGPT or prompts that guide its output toward instructions to generate levels as sequences of Tetris-like block drops. Prompts submitted to the competition are queried by ChatGPT to generate levels that resemble letters of the English alphabet. Levels are evaluated based on their similarity to the target letter and physical stability in the game engine. This provides a quantitative evaluation setting for prompt-based procedural content generation (PCG), an approach that has been gaining popularity in PCG, as in other areas of generative AI. This paper focuses on replicating and generalizing the competition results. The replication experiments in the paper first aim to test whether the number of responses gathered from ChatGPT is sufficient to account for the stochasticity. We requery the original prompt submissions and rerun the original scripts from the competition, on different machines, about six months after the competition. We find that results largely replicate, except that two of the 15 submissions do much better in our replication, for reasons we can only partly determine. When it comes to generalization, we notice that the top-performing prompt has instructions for all 26 target levels hardcoded, which is at odds with the PCGML goal of generating new, previously unseen content from examples. We perform experiments in more restricted zero-shot and few-shot prompting scenarios, and find that generalization remains a challenge for current approaches.
more »
« less
- Award ID(s):
- 1948017
- PAR ID:
- 10526865
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400709555
- Subject(s) / Keyword(s):
- ChatGPT replication reproducibility generalization procedural content generation
- Format(s):
- Medium: X
- Location:
- Worcester MA USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Instruction-tuned large language models (LLMs), such as ChatGPT, have led to promising zero-shot performance in discriminative natural language understanding (NLU) tasks. This involves querying the LLM using a prompt containing the question, and the candidate labels to choose from. The question-answering capabilities of ChatGPT arise from its pre-training on large amounts of human-written text, as well as its subsequent fine-tuning on human preferences, which motivates us to ask: Does ChatGPT also inherit humans’ cognitive biases? In this paper, we study the primacy effect of ChatGPT: the tendency of selecting the labels at earlier positions as the answer. We have two main findings: i) ChatGPT’s decision is sensitive to the order of labels in the prompt; ii) ChatGPT has a clearly higher chance to select the labels at earlier positions as the answer. We hope that our experiments and analyses provide additional insights into building more reliable ChatGPT-based solutions. We release the source code at https://github.com/wangywUST/PrimacyEffectGPT.more » « less
-
The rise of e-commerce and social networking platforms has led to an increase in the disclosure of personal health information within user-generated content. This study investigates the application of large language models (LLMs) to detect and sanitize sensitive health data shared by users across platforms such as Amazon, patient.info, and Facebook. We propose a methodology that leverages LLMs to evaluate both the sensitivity of disclosed information and the platform-specific semantics of the content. Through prompt engineering, our method identifies sensitive information and rephrases it to minimize disclosure while preserving content similarity. ChatGPT serves as the LLM in this study due to its versatility. Empirical results suggest that ChatGPT can reliably assign sensitivity scores to user-generated text and generate sanitized versions that effectively preserve the original meaning.more » « less
-
IEEE Requirements Engineering Conference (Ed.)Large Language Models (LLMs) have the potential to revolutionize automated traceability by overcoming the challenges faced by previous methods and introducing new possibilities. However, the optimal utilization of LLMs for automated traceability remains unclear. This paper explores the process of prompt engineering to extract link predictions from an LLM. We provide detailed insights into our approach for constructing effective prompts, offering our lessons learned. Additionally, we propose multiple strategies for leveraging LLMs to generate traceability links, improving upon previous zero-shot methods on the ranking of candidate links after prompt refinement. The primary objective of this paper is to inspire and assist future researchers and engineers by highlighting the process of constructing traceability prompts to effectively harness LLMs for advancing automatic traceability.more » « less
-
We study the problem of few-shot Fine-grained Entity Typing (FET), where only a few annotated entity mentions with contexts are given for each entity type. Recently, prompt-based tuning has demonstrated superior performance to standard fine-tuning in few-shot scenarios by formulating the entity type classification task as a “fill-in-the-blank” problem. This allows effective utilization of the strong language modeling capability of Pre-trained Language Models (PLMs). Despite the success of current prompt-based tuning approaches, two major challenges remain: (1) the verbalizer in prompts is either manually designed or constructed from external knowledge bases, without considering the target corpus and label hierarchy information, and (2) current approaches mainly utilize the representation power of PLMs, but have not explored their generation power acquired through extensive general-domain pre-training. In this work, we propose a novel framework for fewshot FET consisting of two modules: (1) an entity type label interpretation module automatically learns to relate type labels to the vocabulary by jointly leveraging few-shot instances and the label hierarchy, and (2) a type-based contextualized instance generator produces new instances based on given instances to enlarge the training set for better generalization. On three benchmark datasets, our model outperforms existing methods by significant margins.more » « less
An official website of the United States government

