Abstract Cryptic genetic variants exert minimal phenotypic effects alone but are hypothesized to form a vast reservoir of genetic diversity driving trait evolvability through epistatic interactions1–3. This classical theory has been reinvigorated by pan-genomics, which is revealing pervasive variation within gene families,cis-regulatory regions and regulatory networks4–6. Testing the ability of cryptic variation to fuel phenotypic diversification has been hindered by intractable genetics, limited allelic diversity and inadequate phenotypic resolution. Here, guided by natural and engineeredcis-regulatory cryptic variants in a paralogous gene pair, we identified additional redundanttransregulators, establishing a regulatory network controlling tomato inflorescence architecture. By combining coding mutations withcis-regulatory alleles in populations segregating for all four network genes, we generated 216 genotypes spanning a wide spectrum of inflorescence complexity and quantified branching in over 35,000 inflorescences. Analysis of this high-resolution genotype–phenotype map using a hierarchical model of epistasis revealed a layer of dose-dependent interactions within paralogue pairs enhancing branching, culminating in strong, synergistic effects. However, we also identified a layer of antagonism between paralogue pairs, whereby accumulating mutations in one pair progressively diminished the effects of mutations in the other. Our results demonstrate how gene regulatory network architecture and complex dosage effects from paralogue diversification converge to shape phenotypic space, producing the potential for both strongly buffered phenotypes and sudden bursts of phenotypic change.
more »
« less
Idiosyncratic and dose-dependent epistasis drives variation in tomato fruit size
Epistasis between genes is traditionally studied with mutations that eliminate protein activity, but most natural genetic variation is in cis-regulatory DNA and influences gene expression and function quantitatively. In this study, we used natural and engineered cis-regulatory alleles in a plant stem-cell circuit to systematically evaluate epistatic relationships controlling tomato fruit size. Combining a promoter allelic series with two other loci, we collected over 30,000 phenotypic data points from 46 genotypes to quantify how allele strength transforms epistasis. We revealed a saturating dose-dependent relationship but also allele-specific idiosyncratic interactions, including between alleles driving a step change in fruit size during domestication. Our approach and findings expose an underexplored dimension of epistasis, in which cis-regulatory allelic diversity within gene regulatory networks elicits nonlinear, unpredictable interactions that shape phenotypes.
more »
« less
- PAR ID:
- 10526918
- Publisher / Repository:
- Science
- Date Published:
- Journal Name:
- Science
- Volume:
- 382
- Issue:
- 6668
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- 315 to 320
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundGenetic and epigenetic perturbation of cis-regulatory sequences can shift patterns of gene expression and result in novel phenotypes. Phased genome assemblies now enable the local dissection of linkages between cis-regulatory sequences, including their epigenetic state, and allele-specific gene expression to further characterize gene regulation and resulting phenotypes in heterozygous genomes. ResultsWe assembled a locally phased genome for a mandarin hybrid named ‘Fairchild’ to explore the molecular signatures of allele-specific gene expression. With local genome phasing, genes with allele-specific expression were paired with haplotype-specific chromatin states, including levels of chromatin accessibility, histone modifications, and DNA methylation. We found that 30% of variation in allele-specific expression could be attributed to haplotype associated factors, with allelic levels of chromatin accessibility and three histone modifications in gene bodies having the most influence. Structural variants in promoter regions were also associated with allele-specific expression, including specific enrichments of hAT and MULE-MuDR DNA transposon sequences. Integration of haplotype-resolved genetic and epigenetic landscapes with high-throughput phenotypic analysis of fruit traits in a panel of 154 accessions with mandarin and pummelo ancestry revealed that trait-associated variants were enriched in regions of open chromatin. Mining of trait-associated variants uncovered a Gypsy retrotransposon insertion in a gene that regulates potassium transport and may contribute to the reduction in fruit size that is observed in mandarins. ConclusionsUsing a locally phased assembly of a heterozygous cultivar of citrus, we dissected the interplay between genetic variants and molecular phenotypes to reveal cis-regulatory sequences with potential functional effects on phenotypes relevant for genetic improvement.more » « less
-
ABSTRACT Cryptic genetic variants exert minimal or no phenotypic effects alone but have long been hypothesized to form a vast, hidden reservoir of genetic diversity that drives trait evolvability through epistatic interactions. This classical theory has been reinvigorated by pan-genome sequencing, which has revealed pervasive variation within gene families and regulatory networks, including extensive cis-regulatory changes, gene duplication, and divergence between paralogs. Nevertheless, empirical testing of cryptic variation’s capacity to fuel phenotypic diversification has been hindered by intractable genetics, limited allelic diversity, and inadequate phenotypic resolution. Here, guided by natural and engineered cis-regulatory cryptic variants in a recently evolved paralogous gene pair, we identified an additional pair of redundant trans regulators, establishing a regulatory network that controls tomato inflorescence architecture. By combining coding mutations with a cis-regulatory allelic series in populations segregating for all four network genes, we systematically constructed a collection of 216 genotypes spanning the full spectrum of inflorescence complexity and quantified branching in over 27,000 inflorescences. Analysis of the resulting high-resolution genotype-phenotype map revealed a layer of dose-dependent interactions within paralog pairs that enhances branching, culminating in strong, synergistic effects. However, we also uncovered an unexpected layer of antagonism between paralog pairs, where accumulating mutations in one pair progressively diminished the effects of mutations in the other. Our results demonstrate how gene regulatory network architecture and complex dosage effects from paralog diversification converge to shape phenotypic space under a hierarchical model of epistatic interactions. Given the prevalence of paralog evolution in genomes, we propose that paralogous cryptic variation within regulatory networks elicits hierarchies of epistatic interactions, catalyzing bursts of phenotypic change. Keyword:cryptic mutations, paralogs, redundancy, cis-regulatory, tomato, inflorescence, gene regulatory network, modeling, epistasismore » « less
-
Ingvarsson, Pär (Ed.)Abstract Additive gene action is assumed to underly quantitative traits, but the eventual poor performance of elite wheat lines as parents suggests that epistasis could be the underlying genetic architecture. Sign epistasis is characterized by alleles having either a beneficial or detrimental effect depending on the genetic background, which can result in elite lines that fail as parents in certain parental combinations. Hence, the objective of this study were to test the existence of sign epistasis and examine its consequences to wheat breeding. The presence of sign epistasis is expected to distort the allele frequency distribution between two interacting genes compared to neutral sites, creating strong linkage disequilibrium (LD). To test this hypothesis, analysis of interchromosomal LD in breeding families was performed and detected 19 regions in strong disequilibrium, whose allele frequency distribution matched the sign epistasis prediction and falsified the competing hypothesis of additive selection. To validate these candidate interactions while avoiding the biases of a circular analysis and the confounding effects of genetic drift, two independent sets of populations were analyzed. Genetic drift was attributed to creating the sign epistasis patterns observed in eleven interactions, but there was not sufficient evidence to reject the sign epistasis hypothesis in eight interactions. Sign epistasis may explain the poor performance of elite lines as parents, as crossing lines with complementary allelic combination re-establishes epistatic variance in the offspring. Reduction in the effective population size in certain crosses may also occur when unfavorable sign epistatic combinations are deleterious. The potential existence of di-genic and higher order epistatic interactions in elite germplasm can tremendously impact breeding strategies as managing epistasis becomes imperative for success.more » « less
-
Lasky, Jesse R. (Ed.)Gene expression can be influenced by genetic variants that are closely linked to the expressed gene (cis eQTLs) and variants in other parts of the genome (trans eQTLs). We created a multiparental mapping population by sampling genotypes from a single natural population ofMimulus guttatusand scored gene expression in the leaves of 1,588 plants. We find that nearly every measured gene exhibits cis regulatory variation (91% have FDR < 0.05). cis eQTLs are usually allelic series with three or more functionally distinct alleles. The cis locus explains about two thirds of the standing genetic variance (on average) but varies among genes and tends to be greatest when there is high indel variation in the upstream regulatory region and high nucleotide diversity in the coding sequence. Despite mapping over 10,000 trans eQTL / affected gene pairs, most of the genetic variance generated by trans acting loci remains unexplained. This implies a large reservoir of trans acting genes with subtle or diffuse effects. Mapped trans eQTLs show lower allelic diversity but much higher genetic dominance than cis eQTLs. Several analyses also indicate that trans eQTLs make a substantial contribution to the genetic correlations in expression among different genes. They may thus be essential determinants of “gene expression modules,” which has important implications for the evolution of gene expression and how it is studied by geneticists.more » « less
An official website of the United States government

