Meeting global commitments to conservation, climate, and sustainable development requires consideration of synergies and tradeoffs among targets. We evaluate the spatial congruence of ecosystems providing globally high levels of nature’s contributions to people, biodiversity, and areas with high development potential across several sectors. We find that conserving approximately half of global land area through protection or sustainable management could provide 90% of the current levels of ten of nature’s contributions to people and meet minimum representation targets for 26,709 terrestrial vertebrate species. This finding supports recent commitments by national governments under the Global Biodiversity Framework to conserve at least 30% of global lands and waters, and proposals to conserve half of the Earth. More than one-third of areas required for conserving nature’s contributions to people and species are also highly suitable for agriculture, renewable energy, oil and gas, mining, or urban expansion. This indicates potential conflicts among conservation, climate and development goals.
This content will become publicly available on June 1, 2025
Recent international agreements have strengthened and expanded commitments to protect and restore native habitats for biodiversity protection (“area‐based biodiversity conservation”). Nevertheless, biodiversity conservation is hindered because how such commitments should be implemented has been strongly debated, which can lead to suboptimal habitat protection decisions. We argue that, despite the debates, there are three essential principles for area‐based biodiversity conservation. These principles are related to habitat geographic coverage, amount, and connectivity. They emerge from evidence that, while large areas of nature are important and must be protected, conservation or restoration of multiple small habitat patches is also critical for global conservation, particularly in regions with high land use. We contend that the many area‐based conservation initiatives expected in the coming decades should follow the principles we identify, regardless of ongoing debates. Considering the importance of biodiversity for maintenance of ecosystem services, we suggest that this would bring widespread societal benefits.
more » « less- Award ID(s):
- 1913501
- PAR ID:
- 10526955
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Ecology Letters
- Volume:
- 27
- Issue:
- 6
- ISSN:
- 1461-023X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Significance Biodiversity conservation strategies emphasize protected area expansion to mitigate species losses by safeguarding habitat. However, demand for land for food production is also increasing. We establish a baseline estimate of where and why cropland occurs in protected areas. Our estimates would indicate cropland represents around 18% of all human impacts inside protected areas. Cropland will not be effective in conserving many species, particularly habitat specialists, rare, and threatened species. This suggests a reexamination of the effectiveness of area-based protected area planning is needed. The success of post-2020 biodiversity management depends on addressing trade-offs with food production by creating opportunities to integrate ecosystem conservation and restoration with programs for hunger and malnutrition.
-
Abstract Aim Spatially explicit protections of coastal habitats determined on the current distribution of species and ecosystems risk becoming obsolete in 100 years if the movement of species ranges outpaces management action. Hence, a critical step of conservation is predicting the efficacy of management actions in future. We aimed to determine how foundational, habitat‐building species will respond to climate change in Fiji.
Location The Republic of Fiji.
Methods We develop species distribution models (SDMs) using MaxEnt, General Additive Models and Boosted Regression Trees and publicly available data from the Global Biodiversity Information Facility to predict changes in distribution of suitable habitat for mangrove forests, coral habitat, seagrass meadows and critical fisheries invertebrates under several IPCC climate change scenarios in 2070 or 2100. We then overlay predicted distribution models onto existing Fijian protected area network to assess whether today's conservation measures will afford protection to tomorrow's distributions.
Results We found that mangrove suitability is projected to decrease along the Coral Coast and increase northward towards the Yasawa Islands due to precipitation changes. The response of seagrass meadows was predicted to be inconsistent and dependent on the climate scenario. Meanwhile, suitability for coral reefs was not predicted to decline significantly overall. The mangrove crab
Scylla serrata , an important resource for fisherwomen in Fiji, is projected to increase in habitat suitability while economically important sea cucumber species will have highly variable responses to climate change.Main conclusions Species distribution models are a critical tool for conservation managers, as linking spatial distribution data with future climate change scenarios can aid in the creation and resiliency of protected area programmes. New protected area designations should consider the future distribution of species to maximize benefits to those taxa.
-
Abstract Biodiversity indicators are used to assess progress towards conservation and sustainability goals. However, the spatial scales, methods and assumptions of the underlying reporting metrics can affect the provided information. Using mountain ecosystems as an example, we compare biodiversity protection at subnational scale using the site-based approach of the 2030 Agenda for Sustainable Development (SDG indicator 15.4.1) with an area-based approach compatible with the targets of the Kunming–Montreal Global Biodiversity Framework.
-
Habitat loss is a primary threat to biodiversity across the planet, yet contentious debate has ensued on the importance of habitat fragmentation ‘per se’ (i.e., altered spatial configuration of habitat for a given amount of habitat loss). Based on a review of landscape-scale investigations, Fahrig (2017; Ecological responses to habitat fragmentation per se. Annual Review of Ecology, Evolution, and Systematics 48:1-23) reports that biodiversity responses to habitat fragmentation ‘per se’ are more often positive rather than negative and concludes that the widespread belief in negative fragmentation effects is a ‘zombie idea’. We show that Fahrig’s conclusions are drawn from a narrow and potentially biased subset of available evidence, which ignore much of the observational, experimental and theoretical evidence for negative effects of altered habitat configuration. We therefore argue that Fahrig’s conclusions should be interpreted cautiously as they could be misconstrued by policy makers and managers, and we provide six arguments why they should not be applied in conservation decision-making. Reconciling the scientific disagreement, and informing conservation more effectively, will require research that goes beyond statistical and correlative approaches. This includes a more prudent use of data and conceptual models that appropriately partition direct vs indirect influences of habitat loss and altered spatial configuration, and more clearly discriminate the mechanisms underpinning any changes. Incorporating these issues will deliver greater mechanistic understanding and more predictive power to address the conservation issues arising from habitat loss and fragmentation.more » « less