skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Genomic patterns in the dwarf kingfishers of northern Melanesia reveal a mechanistic framework explaining the paradox of the great speciators
Abstract The paradox of the great speciators describes a contradictory biogeographic pattern exhibited by numerous avian lineages in Oceania. Specifically, these lineages display broad geographic distributions across the region, implying strong over-water dispersal capabilities; yet, they also display repeated genetic and phenotypic divergence—even between geographically proximate islands—implying poor inter-island dispersal capabilities. One group originally cited as evidence for this paradox is the dwarf kingfishers of the genus Ceyx. Here, using genomic sequencing and comprehensive geographic sampling of the monophyletic Ceyx radiation from northern Melanesia, we find repeated, deep genetic divergence and no evidence for gene flow between lineages found on geographically proximate islands, providing an exceptionally clear example of the paradox of the great speciators. A dated phylogenetic reconstruction suggests a significant burst of diversification occurred rapidly after reaching northern Melanesia, between 3.9 and 2.9 MYA. This pattern supports a shift in net diversification rate, concordant with the expectations of the “colonization cycle” hypothesis, which implies a historical shift in dispersiveness among great speciator lineages during the evolutionary past. Here, we present a formalized framework that explains how repeated founder effects and shifting selection pressures on highly dispersive genotypes are the only ultimate causes needed to generate the paradox of the great speciators. Within this framework, we emphasize that lineage-specific traits and island-specific abiotic factors will result in varying levels of selection pressure against dispersiveness, caused by varying proximate eco-evolutionary mechanisms. Overall, we highlight how understanding patterns of diversification in the Ceyx dwarf kingfishers helped us generate a cohesive framework that provides a rigorous mechanistic explanation for patterns concordant with the paradox of the great speciators and the repeated emergence of geographic radiations in island archipelagoes across the globe.  more » « less
Award ID(s):
2112467
PAR ID:
10526983
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Evolution Letters
Volume:
8
Issue:
6
ISSN:
2056-3744
Format(s):
Medium: X Size: p. 813-827
Size(s):
p. 813-827
Sponsoring Org:
National Science Foundation
More Like this
  1. The flora and fauna of island systems, especially those in the Indo-Pacific, are renowned for their high diversification rates and outsized contribution to the development of evolutionary theories. The total diversity of geographic radiations of many Indo-Pacific fauna is often incompletely sampled in phylogenetic studies due to the difficulty in obtaining single island endemic forms across the Pacific and the relatively poor performance of degraded DNA when using museum specimens for inference of evolutionary relationships. New methods for production and analysis of genome-wide datasets sourced from degraded DNA are facilitating insights into the complex evolutionary histories of these influential island faunas. Here, we leverage whole genome resequencing (20X average coverage) and extensive sampling of all taxonomic diversity within Todiramphus kingfishers, a rapid radiation of largely island endemic Great Speciators. We find that whole genome datasets do not outright resolve the evolutionary relationships of this clade: four types of molecular markers (UCEs, BUSCOs, SNPs, and mtDNA) and tree building methods did not find a single well-supported and concordant species-level topology. We then uncover evidence of widespread incomplete lineage sorting and both ancient and contemporary gene flow and demonstrate how these factors contribute to conflicting evolutionary histories. Our complete taxonomic sampling allowed us to further identify a novel case of mitochondrial capture between two allopatric species, suggesting a potential historical (but since lost) hybrid zone as islands were successively colonized. Taken together, these results highlight how increased genomic and taxon sampling can reveal complex evolutionary patterns in rapid island radiations. 
    more » « less
  2. Abstract The ecological and phenotypic diversity observed in oceanic island radiations presents an evolutionary paradox: a high level of genetic variation is typically required for diversification, but species colonizing a new island commonly suffer from founder effects. This reduction in population size leads to lower genetic diversity, which ultimately results in a reduction in the efficiency of natural selection. What then is the source of genetic variation which acts as the raw material for ecological and phenotypic diversification in oceanic archipelagos? Transposable elements (TEs) are mobile genetic elements that have been linked to the generation of genetic diversity, and evidence suggests that TE activity and accumulation along the genome can result from reductions in population size. Here, we use the Hawaiian spiny-leg spider radiation (Tetragnatha) to test whether TE accumulation increases due to demographic processes associated with island colonization. We sequenced and quantified TEs in 23 individuals representing 16 species from the spiny-leg radiation and four individuals from its sister radiation, the Hawaiian web-building Tetragnatha. Our results show that founder effects resulting from colonization of new islands have not resulted in TE accumulation over evolutionary time. Specifically, we found no evidence for an increase in abundance of specific TE superfamilies, nor an accumulation of ‘young TEs’ in lineages which have recently colonized a new island or are present in islands with active volcanoes. We also found that the DNA/hAT transposon superfamily is by far the most abundant TE superfamily in the Tetragnatha radiation. This work shows that there is no clear trend of increasing TE abundance for the spiny-leg radiation across the archipelago chronosequence, and TE accumulation is not affected by population oscillations associated with island colonization events. Therefore, despite their known role in the generation of genetic diversity, TE activity does not appear to be the mechanism explaining the evolutionary paradox of insular diversification in the Tetragnatha spiny-leg radiation. 
    more » « less
  3. Abstract The radiation of so-called “great speciators” represents a paradox among the myriad of avian radiations endemic to the southwest Pacific. In such radiations, lineages otherwise capable of dispersing across vast distances of open ocean differentiate rapidly and frequently across relatively short geographic barriers. Here, we evaluate the phylogeography of the Rufous Fantail (Rhipidura rufifrons). Although a presumed “great-speciator”, no formal investigations across its range have been performed. Moreover, delimitation of lineages within R. rufifrons, and the biogeographic implications of those relationships, remain unresolved. To investigate whether R. rufifrons represents a great speciator we identified thousands of single nucleotide polymorphisms for 89 individuals, representing 19 described taxa. Analyses recovered 7 divergent lineages and evidence of gene flow between geographically isolated populations. We also found plumage differences to be a poor proxy for evolutionary relationships. Given the relatively recent divergence dates for the clade (1.35–2.31 mya), rapid phenotypic differentiation, and evidence for multiple independent lineages within the species complex, we determine that R. rufifrons possesses the characteristics of a great speciator. 
    more » « less
  4. Abstract Newly arrived species on young or remote islands are likely to encounter less predation and competition than source populations on continental landmasses. The associated ecological release might facilitate divergence and speciation as colonizing lineages fill previously unoccupied niche space. Characterizing the sequence and timing of colonization on islands represents the first step in determining the relative contributions of geographical isolation and ecological factors in lineage diversification. Herein, we use genome-scale data to estimate timing of colonization in Naesiotus snails to the Galápagos islands from mainland South America. We test inter-island patterns of colonization and within-island radiations to understand their contribution to community assembly. Partly contradicting previously published topologies, phylogenetic reconstructions suggest that most Naesiotus species form island-specific clades, with within-island speciation dominating cladogenesis. Galápagos Naesiotus also adhere to the island progression rule, with colonization proceeding from old to young islands and within-island diversification occurring earlier on older islands. Our work provides a framework for evaluating the contribution of colonization and in situ speciation to the diversity of other Galápagos lineages. 
    more » « less
  5. The history of riverine fish diversification is largely a product of geographic isolation. Physical barriers that reduce or eliminate gene flow between populations facilitate divergence via genetic drift and natural selection, eventually leading to speciation. For freshwater organisms, diversification is often the product of drainage basin rearrangements. In young clades where the history of isolation is the most recent, evolutionary relationships can resemble a tangled web. One especially recalcitrant group of freshwater fishes is the Johnny Darter (Etheostoma nigrum) species complex, where traditional taxonomy and molecular phylogenetics indicate a history of gene flow and conflicting inferences of species diversity. Here we assemble a genomic dataset using double digest restriction site associated DNA (ddRAD) sequencing and use phylogenomic and population genetic approaches to investigate the evolutionary history of the complex of species that includes E. nigrum, E. olmstedi, E. perlongum, and E. susanae. We reveal and validate several evolutionary lineages that we delimit as species, highlighting the need for additional work to formally describe the diversity of the Etheostoma nigrum complex. Our analyses also identify gene flow among recently diverged lineages, including one instance involving E. susanae, a localized and endangered species. Phylogeographic structure within the Etheostoma nigrum species complex coincides with major geologic events, such as parallel divergence in river basins during Pliocene inundation of the Atlantic coastal plain and multiple northward post-glacial colonization routes tracking river basin rearrangements. Our study serves as a nuanced example of how low dispersal rates coupled with geographic isolation among disconnected river systems in eastern North America has produced one of the world’s freshwater biodiversity hotspots. 
    more » « less