skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Allo: A Programming Model for Composable Accelerator Design
Special-purpose hardware accelerators are increasingly pivotal for sustaining performance improvements in emerging applications, especially as the benefits of technology scaling continue to diminish. However, designers currently lack effective tools and methodologies to construct complex, high-performance accelerator architectures in a productive manner. Existing high-level synthesis (HLS) tools often require intrusive source-level changes to attain satisfactory quality of results. Despite the introduction of several new accelerator design languages (ADLs) aiming to enhance or replace HLS, their advantages are more evident in relatively simple applications with a single kernel. Existing ADLs prove less effective for realistic hierarchical designs with multiple kernels, even if the design hierarchy is flattened. In this paper, we introduce Allo, a composable programming model for efficient spatial accelerator design. Allo decouples hardware customizations, including compute, memory, communication, and data type from algorithm specification, and encapsulates them as a set of customization primitives. Allo preserves the hierarchical structure of an input program by combining customizations from different functions in a bottom-up, type-safe manner. This approach facilitates holistic optimizations that span across function boundaries. We conduct comprehensive experiments on commonly-used HLS benchmarks and several realistic deep learning models. Our evaluation shows that Allo can outperform state-of-the-art HLS tools and ADLs on all test cases in the PolyBench. For the GPT2 model, the inference latency of the Allo generated accelerator is 1.7x faster than the NVIDIA A100 GPU with 5.4x higher energy efficiency, demonstrating the capability of Allo to handle large-scale designs.  more » « less
Award ID(s):
2019306 2118709
PAR ID:
10527007
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Programming Languages
Volume:
8
Issue:
PLDI
ISSN:
2475-1421
Page Range / eLocation ID:
593 to 620
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Field-programmable gate arrays (FPGAs) provide an opportunity to co-design applications with hardware accelerators, yet they remain difficult to program. High-level synthesis (HLS) tools promise to raise the level of abstraction by compiling C or C++ to accelerator designs. Repurposing legacy software languages, however, requires complex heuristics to map imperative code onto hardware structures. We find that the black-box heuristics in HLS can be unpredictable: changing parameters in the program that should improve performance can counterintuitively yield slower and larger designs. This paper proposes a type system that restricts HLS to programs that can predictably compile to hardware accelerators. The key idea is to model consumable hardware resources with a time-sensitive affine type system that prevents simultaneous uses of the same hardware structure. We implement the type system in Dahlia, a language that compiles to HLS C++, and show that it can reduce the size of HLS parameter spaces while accepting Pareto-optimal designs. 
    more » « less
  2. High-level synthesis (HLS) is an automated design process that transforms high-level code into optimized hardware designs, enabling rapid development of efficient hardware accelerators for various applications such as image processing, machine learning, and signal processing. To achieve optimal performance, HLS tools rely on pragmas, which are directives inserted into the source code to guide the synthesis process, and these pragmas can have various settings and values that significantly impact the resulting hardware design. State-of the-art ML-based HLS methods, such as harp, first train a deep learning model, typically based on graph neural networks (GNNs) applied to graph-based representations of the source code and its pragmas. They then perform design space exploration (DSE) to explore the pragma design space, rank candidate designs using the trained model, and return the top designs as the final designs. However, traditional DSE methods face challenges due to the highly nonlinear relationship between pragma settings and performance metrics, along with complex interactions between pragmas that affect performance in non-obvious ways. To address these challenges, we propose compareXplore, a novel approach that learns to compare hardware designs for effective HLS optimization. compareXplore introduces a hybrid loss function that combines pairwise preference learning with pointwise performance prediction, enabling the model to capture both relative preferences and absolute performance values. Moreover, we introduce a novel Node Difference Attention module that focuses on the most informative differences between designs, enhancing the model’s ability to identify critical pragmas impacting performance. compareXplore adopts a two-stage DSE approach, where a pointwise prediction model is used for the initial design pruning, followed by a pairwise comparison stage for precise performance verification. Experimental results demonstrate that compareXplore achieves significant improvements in ranking metrics and generates high quality HLS results for the selected designs, outperforming the existing state-of-the-art method. 
    more » « less
  3. FPGAs are promising platforms for accelerating irregular applications due to their ability to implement highly specialized hardware designs for each kernel. However, the design and implementation of FPGA-accelerated kernels can take several months using hardware design languages. High Level Synthesis (HLS) tools provide fast, high quality results for regular applications, but lack the support to effectively accelerate more irregular, complex workloads. This work analyzes the challenges and benefits of using a commercial state-of-the-art HLS tool and its available optimizations to accelerate graph sampling. We evaluate the resulting designs and their effectiveness when deployed in a state-of-the-art heterogeneous framework that implements the Influence Maximization with Martingales (IMM) algorithm, a complex graph analytics algorithm. We discuss future opportunities for improvement in hardware, HLS tools, and hardware/software co-design methodology to better support complex irregular applications such as IMM. 
    more » « less
  4. Deep Neural Networks (DNNs) have been successfully applied in many fields. Considering performance, flexibility, and energy efficiency, Field Programmable Gate Array (FPGA) based accelerator for DNNs is a promising solution. The existing frameworks however lack the possibility of reusability and friendliness to design a new network with minimum efforts. Modern high-level synthesis (HLS) tools greatly reduce the turnaround time of designing and implementing complex FPGA-based accelerators. This paper presents a framework for hardware accelerator for DNNs using high level specification. A novel architecture is introduced that maximizes data reuse and external memory bandwidth. This framework allows to generate a scalable HLS code for a given pre-trained model that can be mapped to different FPGA platforms. Various HLS compiler optimizations have been applied to the code to produce efficient implementation and high resource utilization. The framework achieves a peak performance of 23 frames per second for SqueezeNet on Xilinx Alveo u250 board. 
    more » « less
  5. null (Ed.)
    We present Calyx, a new intermediate language (IL) for compiling high-level programs into hardware designs. Calyx combines a hardware-like structural language with a software-like control flow representation with loops and conditionals. This split representation enables a new class of hardware-focused optimizations that require both structural and control flow information which are crucial for high-level programming models for hardware design. The Calyx compiler lowers control flow constructs using finite-state machines and generates synthesizable hardware descriptions. We have implemented Calyx in an optimizing compiler that translates high-level programs to hardware. We demonstrate Calyx using two DSL-to-RTL compilers, a systolic array generator and one for a recent imperative accelerator language, and compare them to equivalent designs generated using high-level synthesis (HLS). The systolic arrays are 4.6× faster and 1.11× larger on average than HLS implementations, and the HLS-like imperative language compiler is within a few factors of a highly optimized commercial HLS toolchain. We also describe three optimizations implemented in the Calyx compiler. 
    more » « less