This content will become publicly available on November 21, 2024
- Award ID(s):
- 2203080
- NSF-PAR ID:
- 10527227
- Publisher / Repository:
- American Society of Mechanical Engineers
- Date Published:
- ISBN:
- 978-0-7918-8730-1
- Subject(s) / Keyword(s):
- Social media content mining Named entity recognition Co-mention network Network evolution
- Format(s):
- Medium: X
- Location:
- Boston, Massachusetts, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
Suweis, Samir (Ed.)Statistical network models have been used to study the competition among different products and how product attributes influence customer decisions. However, in existing research using network-based approaches, product competition has been viewed as binary (i.e., whether a relationship exists or not), while in reality, the competition strength may vary among products. In this paper, we model the strength of the product competition by employing a statistical network model, with an emphasis on how product attributes affect which products are considered together and which products are ultimately purchased by customers. We first demonstrate how customers’ considerations and choices can be aggregated as weighted networks. Then, we propose a weighted network modeling approach by extending the valued exponential random graph model to investigate the effects of product features and network structures on product competition relations. The approach that consists of model construction, interpretation, and validation is presented in a step-by-step procedure. Our findings suggest that the weighted network model outperforms commonly used binary network baselines in predicting product competition as well as market share. Also, traditionally when using binary network models to study product competitions and depending on the cutoff values chosen to binarize a network, the resulting estimated customer preferences can be inconsistent. Such inconsistency in interpreting customer preferences is a downside of binary network models but can be well addressed by the proposed weighted network model. Lastly, this paper is the first attempt to study customers’ purchase preferences (i.e., aggregated choice decisions) and car competition (i.e., customers’ co-consideration decisions) together using weighted directed networks.more » « less
-
null (Ed.)
Abstract Statistical network models allow us to study the co-evolution between the products and the social aspects of a market system, by modeling these components and their interactions as graphs. In this paper, we study competition between different car models using network theory, with a focus on how product attributes (like fuel economy and price) affect which cars are considered together and which cars are finally bought by customers. Unlike past work, where most systems have been studied with the assumption that relationships between competitors are binary (i.e., whether a relationship exists or not), we allow relationships to take strengths (i.e., how strong a relationship is). Specifically, we use valued Exponential Random Graph Models and show that our approach provides a significant improvement over the baselines in predicting product co-considerations as well as in the validation of market share. This is also the first attempt to study aggregated purchase preference and car competition using valued directed networks.
-
null (Ed.)Abstract Understanding the impact of engineering design on product competitions is imperative for product designers to better address customer needs and develop more competitive products. In this paper, we propose a dynamic network-based approach for modeling and analyzing the evolution of product competitions using multi-year buyer survey data. The product co-consideration network, formed based on the likelihood of two products being co-considered from survey data, is treated as a proxy of products’ competition relations in a market. The separate temporal exponential random graph model (STERGM) is employed as the dynamic network modeling technique to model the evolution of network as two separate processes: link formation and link dissolution. We use China’s automotive market as a case study to illustrate the implementation of the proposed approach and the benefits of dynamic network models compared to the static network modeling approach based on an exponential random graph model (ERGM). The results show that since STERGM takes preexisting competition relations into account, it provides a pathway to gain insights into why a product may maintain or lose its competitiveness over time. These driving factors include both product attributes (e.g., fuel consumption) as well as current market structures (e.g., the centralization effect). With the proposed dynamic network-based approach, the insights gained from this paper can help designers better interpret the temporal changes of product competition relations to support product design decisions.more » « less
-
Abstract Understanding relationships between different products in a market system and predicting how changes in design impact their market position can be instrumental for companies to create better products. We propose a graph neural network-based method for modeling relationships between products, where nodes in a network represent products and edges represent their relationships. Our modeling enables a systematic way to predict the relationship links between unseen products for future years. When applied to a Chinese car market case study, our method based on an inductive graph neural network approach, GraphSAGE, yields double the link prediction performance compared to an existing network modeling method—exponential random graph model-based method for predicting the car co-consideration relationships. Our work also overcomes scalability and multiple data type-related limitations of the traditional network modeling methods by modeling a larger number of attributes, mixed categorical and numerical attributes, and unseen products. While a vanilla GraphSAGE requires a partial network to make predictions, we augment it with an “adjacency prediction model” to circumvent the limitation of needing neighborhood information. Finally, we demonstrate how insights obtained from a permutation-based interpretability analysis can help a manufacturer understand how design attributes impact the predictions of product relationships. Overall, this work provides a systematic data-driven method to predict the relationships between products in a complex network such as the car market.more » « less
-
Abstract Customer preference modelling has been widely used to aid engineering design decisions on the selection and configuration of design attributes. Recently, network analysis approaches, such as the exponential random graph model (ERGM), have been increasingly used in this field. While the ERGM-based approach has the new capability of modelling the effects of interactions and interdependencies (e.g., social relationships among customers) on customers’ decisions via network structures (e.g., using triangles to model peer influence), existing research can only model customers’ consideration decisions, and it cannot predict individual customer’s choices, as what the traditional utility-based discrete choice models (DCMs) do. However, the ability to make choice predictions is essential to predicting market demand, which forms the basis of decision-based design (DBD). This paper fills this gap by developing a novel ERGM-based approach for choice prediction. This is the first time that a network-based model can explicitly compute the probability of an alternative being chosen from a choice set. Using a large-scale customer-revealed choice database, this research studies the customer preferences estimated from the ERGM-based choice models with and without network structures and evaluates their predictive performance of market demand, benchmarking the multinomial logit (MNL) model, a traditional DCM. The results show that the proposed ERGM-based choice modelling achieves higher accuracy in predicting both individual choice behaviours and market share ranking than the MNL model, which is mathematically equivalent to ERGM when no network structures are included. The insights obtained from this study further extend the DBD framework by allowing explicit modelling of interactions among entities (i.e., customers and products) using network representations.more » « less