skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rapid removal and replacement of dissolved organic matter during circulation through ultramafic crust
Large volumes of seawater have passed through the rocky subseafloor throughout Earth’s history. The scale of circulation is sufficiently large to impact the cycling of marine dissolved organic carbon (DOC), one of the largest pools of reduced carbon on Earth whose sources and sinks remain enigmatic, and to sequester carbon over geologic timescales. While the fate of DOC in numerous mafic systems has been examined, no previous reports are available on the less studied but still abundant ultramafic systems. We analyzed the concentration and composition of DOC from the Lost City hydrothermal field (30°N, Mid-Atlantic Ridge), a long-lived ultramafic system with minimal magmatic input. We show that per liter of seawater, more DOC is removed and a rate >650 times faster rate than in mafic ridge flank systems. Simultaneously, newly synthesized 14C-free organics are exported into the water column, adding a pre-aged component to the deep DOC pool. The sequestration of oceanic organic molecules onto minerals could partially account for the substantial total organic carbon present in ultramafic rocks, which is currently interpreted as evidence of chemoautotrophy or abiotic synthesis.  more » « less
Award ID(s):
1536702
PAR ID:
10527340
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Earth. Planet. Sci. Lett.
Date Published:
Journal Name:
Earth and Planetary Science Letters
Volume:
629
Issue:
C
ISSN:
0012-821X
Page Range / eLocation ID:
118600
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Large volumes of fluid flow through aged oceanic crust. Given the scale of this water flux, the exchange of organic and inorganic carbon that it mediates between the crust and deep ocean can be significant. However, off-axis carbon fluxes in older oceanic crust are still poorly constrained because access to low-temperature fluids from this environment is limited. At North Pond, a sedimented depression located on 8-million-year-old crust on the flank of the Mid-Atlantic Ridge, circulating crustal fluids are accessible through drilled borehole observatories. Here, fluids are cool (≤ 20°C), oxygenated and bear strong geochemical similarities to bottom seawater. In this study, we report concentrations and isotopic composition of dissolved organic and inorganic carbon from crustal fluids that were sampled six years after the installation of borehole observatories, which better represent the fluid geochemistry prior to drilling and perturbation. Radiocarbon-based signatures within carbon reservoirs support divergent shallow and deep fluid pathways within the crust. We also report a net loss of both dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) from the fluid during isolation in the crust. The removal of DOC is isotopically selective and consistent with microbe-mediated DOC oxidation. The loss of DIC is consistent with carbonate precipitation, although geochemical signatures of DIC addition to the fluids from DOC oxidation and basalt weathering are also evident. Extrapolated to global fluxes, systems like North Pond could be responsible for a net loss of ~10^11 mol C/yr of DIC and ~10^11 mol C/yr of DOC during the circulation of fluids through oceanic crust at low temperatures. 
    more » « less
  2. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 357 will be implemented as a Mission Specific Platform (MSP) expedition that will address two exciting discoveries in mid-ocean-ridge research: off-axis, serpentinite-hosted hydrothermal activity exemplified by the Lost City hydrothermal field (LCHF) and the significance of tectono-magmatic processes in forming and exposing heterogeneous mafic and variably serpentinized ultramafic lithosphere that are key components of slow- and ultraslow-spreading ridges. Serpentinization is a fundamental process that controls rheology and geophysical properties of the oceanic lithosphere and has major consequences for heat flux, geochemical cycles, and microbial activity in a wide variety of environments. However, we currently have no constraints on the nature and distribution of microbial communities in ultramafic subsurface environments. Our planned drilling focuses on (1) exploring the extent and activity of the subsurface biosphere in young ultramafic and mafic seafloor; (2) quantifying the role of serpentinization in driving hydrothermal systems, in sustaining microbiological communities, and in the sequestration of carbon in ultramafic rocks; (3) assessing how abiotic and biotic processes change with aging of the lithosphere and with variations in rock type; and (4) characterizing tectono-magmatic processes that lead to lithospheric heterogeneities and the evolution of hydrothermal activity associated with detachment faulting. This expedition will be the first IODP expedition to utilize seafloor drill technology (MeBo and BGS Seafloor Rockdrill 2) to core a series of shallow (50–80 m) holes across Atlantis Massif—an oceanic core complex (30°N, Mid-Atlantic Ridge), where detachment faulting exposes mafic and ultramafic lithologies on the seafloor. We aim to recover in situ sequences of sediments, hydrothermal deposits/veins, and basement rocks that comprise a broad zone of detachment faulting across (1) a spreading-parallel (east–west) profile along the southern wall and at varying distances from the LCHF and (2) a ridge-parallel (north–south) profile into the center of the massif, where the dominant rock type changes from ultramafic to mafic. Drilling the east–west profile will allow us to evaluate how microbial communities evolve with variations in hydrothermal activity and with age of emplacement on the seafloor. We aim to compare microbial activity and diversity in areas of diffuse, H2-rich fluid flow and carbonate precipitation with communities in areas away from the active hydrothermal system and with variable substrates and crustal ages. By quantifying the extent and evolution of carbonate precipitation we will evaluate the potential for natural CO2 sequestration in serpentinizing peridotites. Drilling the north–south profile will allow us to evaluate the nature of the deep biosphere in varying lithologies and to assess the role of the differing rheologies of gabbros and serpentinized ultramafic rocks in localizing detachment faults. This expedition will also include engineering developments to sample bottom waters before and after drilling and to monitor methane, dissolved oxygen, redox, conductivity, temperature, and depth while drilling. In addition, seafloor operations will include deploying borehole plugs and swellable packers to seal the holes at high-priority sites after drilling to provide opportunities for future hydrogeological and microbiological experiments. 
    more » « less
  3. Abstract Dissolved organic carbon (DOC) is a key variable impacting stream biogeochemical processes. The relationship between DOC concentration (C) and stream discharge (q) can elucidate spatial and temporal DOC source dynamics in watersheds. In the ephemeral glacial meltwater streams of the McMurdo Dry Valleys (MDV), Antarctica, the C‐qrelationship has been applied to dissolved inorganic nitrogen and weathering solutes including silica, which all exhibit chemostatic C‐qbehavior; but DOC‐qdynamics have not been studied. DOC concentrations here are low compared to temperate streams, in the range of 0.1–2 mg C l−1, and their chemical signal clearly indicates derivation from microbial biomass (benthic mats and hyporheic biofilm). To investigate whether the DOC generation rate from these autochthonous organic matter pools was sufficient to maintain chemostasis for DOC, despite these streams' large diel and interannual fluctuations in discharge, we fit the long‐term DOC‐qdata to a power law and an advection‐reaction model. Model outputs and coefficients of variation characterize the DOC‐qrelationship as chemostatic for several MDV streams. We propose a conceptual model in which hyporheic carbon storage, hyporheic exchange rates, and net DOC generation rates are key interacting components that enable chemostatic DOC‐qbehavior in MDV streams. This model clarifies the role of autochthonous carbon stores in maintaining DOC chemostasis and may be useful for examining these relationships in temperate systems, which typically have larger sources of bioavailable autochthonous organic carbon than MDV streams but where this autochthonous signal could be masked by a stronger allochthonous contribution. 
    more » « less
  4. Coastal erosion mobilizes large quantities of organic matter (OM) to the Arctic Ocean where it may fuel greenhouse gas emissions and marine production. While the biodegradability of permafrost‐derived dissolved organic carbon (DOC) has been extensively studied in inland soils and freshwaters, few studies have examined dissolved OM (DOM) leached from eroding coastal permafrost in seawater. To address this knowledge gap, we sampled three horizons from bluff exposures near Drew Point, Alaska: seasonally thawed active layer soils, permafrost containing Holocene terrestrial and/or lacustrine OM, and permafrost containing late‐Pleistocene marine‐derived OM. Samples were leached in seawater to compare DOC yields, DOM composition (chromophoric DOM, Fourier transform ion cyclotron resonance mass spectrometry), and biodegradable DOC (BDOC). Holocene terrestrial permafrost leached the most DOC compared to active layer soils and Pleistocene marine permafrost. However, DOC from Pleistocene marine permafrost was the most biodegradable (33 ± 6% over 90 days), followed by DOC from active layer soils (23 ± 5%) and Holocene terrestrial permafrost (14 ± 3%). Permafrost leachates contained relatively more aliphatic and peptide‐like formulae, whereas active layer leachates contained relatively more aromatic formulae. BDOC was positively correlated with nitrogen‐containing and aliphatic formulae, and negatively correlated with polyphenolic and condensed aromatic formulae. Using estimates of eroding OM, we scale our results to estimate DOC and BDOC inputs to the Alaska Beaufort Sea. While DOC inputs from coastal erosion are relatively small compared to rivers, our results suggest that erosion may be an important source of BDOC to the Beaufort Sea when river inputs are low. 
    more » « less
  5. Abstract Carbonate‐brucite chimneys are a characteristic of low‐ to moderate‐temperature, ultramafic‐hosted alkaline hydrothermal systems, such as the Lost City hydrothermal field located on the Atlantis Massif at 30°N near the Mid‐Atlantic Ridge. These chimneys form as a result of mixing between warm, serpentinization‐derived vent fluids and cold seawater. Previous work has documented the evolution in mineralogy and geochemistry associated with the aging of the chimneys as hydrothermal activity wanes. However, little is known about spatial heterogeneities within and among actively venting chimneys. New mineralogical and geochemical data (87Sr/86Sr and stable C, O, and clumped isotopes) indicate that the brucite and calcite precipitate at elevated temperatures in vent fluid‐dominated domains in the interior of chimneys. Exterior zones dominated by seawater are brucite‐poor and aragonite is the main carbonate mineral. Carbonates record mostly out of equilibrium oxygen and clumped isotope signatures due to rapid precipitation upon vent fluid‐seawater mixing. On the other hand, the carbonates precipitate closer to carbon isotope equilibrium, with dissolved inorganic carbon in seawater as the dominant carbon source and have δ13C values within the range of marine carbonates. Our data suggest that calcite is a primary mineral in the active hydrothermal chimneys and does not exclusively form as a replacement of aragonite during later alteration with seawater. Elevated formation temperatures and lower87Sr/86Sr relative to aragonite in the same sample suggest that calcite may be the first carbonate mineral to precipitate. 
    more » « less