skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nonlinear Riparian Interactions Drive Changes in Headwater Streamflow
As drought and wildfire frequency increase across the western United States, our ability to predict how water resources will respond to these disturbances depends on our understanding of the feedbacks that maintain watershed function and streamflow. Previous studies of non‐perennial headwater streams have ranked drivers of low‐flow conditions; however, there is a limited understanding of the interactions between these drivers and the processes through which these interactions affect streamflow. Here, we use stream water level, soil moisture, sap flow, and vapor pressure deficit data to investigate ecohydrological interactions along a mountainous headwater stream. Correlation and cross‐correlation analyses of these variables show that ecohydrological interactions are (a) nonlinear and (b) interconnected, suggesting that analyses assuming linearity and independence of each driver are inadequate for quantifying these interactions. To account for these issues and investigate causal linkages, we use convergent cross‐mapping (CCM) to characterize the feedbacks that influence non‐perennial streamflow. CCM is a nonlinear, dynamic method that has only recently been applied to hydrologic systems. CCM results reveal that atmospheric losses associated with local sap flow and vapor pressure deficit are driving changes in soil moisture and streamflow (p < 0.01) and that atmospheric losses influence stream water more directly than shallow soil moisture. These results also demonstrate that riparian processes continue to affect subsurface flows in the channel corridor even after stream drying. This study proposes a nonlinear framework for quantifying the ecohydrologic interactions that may determine how headwater streams respond to disturbance.  more » « less
Award ID(s):
1653998
PAR ID:
10527366
Author(s) / Creator(s):
;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Water Resources Research
Volume:
59
Issue:
10
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Non-perennial rivers and streams make up over half the global river network and are becoming more widespread. Transitions from perennial to non-perennial flow are a threshold-type change that can lead to alternative stable states in aquatic ecosystems, but it is unknown whether streamflow itself is stable in either wet (flowing) or dry (no-flow) conditions. Here, we investigated drivers and feedbacks associated with regime shifts between wet and dry conditions in an intermittent reach of the Arkansas River (USA) over the past 23 years. Multiple lines of evidence suggested that these regimes represent alternative stable states, including (a) significant jumps in discharge time series that were not accompanied by jumps in flow drivers such as precipitation and groundwater pumping; (b) a multi-modal state distribution with 92% of months experiencing no-flow conditions for <10% or >90% of days, despite unimodal distributions of precipitation and pumping; and (c) a hysteretic relationship between climate and flow state. Groundwater levels appear to be the primary control over the hydrological regime, as groundwater levels in the alluvial aquifer were higher than the stream stage during wet regimes and lower than the streambed during dry regimes. Groundwater level variation, in turn, was driven by processes occurring at both the regional scale (surface water inflows from upstream, groundwater pumping) and the reach scale (stream–aquifer exchange, diffuse recharge through the soil column). Historical regime shifts were associated with diverse pressures including network disconnection caused by upstream water use, increased flow stability potentially associated with reservoir operations, and anomalous wet and dry climate conditions. In sum, stabilizing feedbacks among upstream inflows, stream–aquifer interactions, climate, vegetation, and pumping appear to create alternative wet and dry stable states at this site. These stabilizing feedbacks suggest that widespread observed shifts from perennial to non-perennial flow will be difficult to reverse. 
    more » « less
  2. Abstract Evapotranspiration (ET) is co‐regulated by subsurface water availability, atmospheric demand for water, and radiation. Spatial differences in the limiting factors on ET that emerge along the soil‐plant‐atmosphere continuum result in distinct ecohydrological regimes with differing sensitivities to atmospheric and subsurface drivers. However, different components of the soil‐plant‐atmosphere continuum are not equally well understood. Deep subsurface water access is particularly difficult to measure and model, but can sustain ET under drought conditions when shallow soil moisture appears to be acutely limiting. Here, we exploited this principle to identify ecosystems that rely on deep subsurface water availability. We first used a plant hydraulic model to determine the expected ET behavior for plants with deep water access. We then examined 19 flux towers and found that responsiveness of ET to atmospheric conditions during dry periods was indicative of some ecosystems with deep water access. We used the divergent sensitivities of ET to vapor pressure deficit, radiation, and shallow soil moisture to identify distinct ecohydrological regimes in gridded data covering the continental U.S. We diagnosed deep water usage in ecosystems where ET remained sensitive to atmospheric conditions despite being insensitive to shallow soil moisture variability. Further, we found that drought stress, plant hydraulic traits, and ecosystem biophysical variables mediated the sensitivity of ET to aboveground and belowground conditions. 
    more » « less
  3. ABSTRACT The importance of subsurface water dynamics, such as water storage and flow partitioning, is well recognised. Yet, our understanding of their drivers and links to streamflow generation has remained elusive, especially in small headwater streams that are often data‐limited but crucial for downstream water quantity and quality. Large‐scale analyses have focused on streamflow characteristics across rivers with varying drainage areas, often overlooking the subsurface water dynamics that shape streamflow behaviour. Here we ask the question:What are the climate and landscape characteristics that regulate subsurface dynamic storage, flow path partitioning, and dynamics of streamflow generation in headwater streams?To answer this question, we used streamflow data and a widely‐used hydrological model (HBV) for 15 headwater catchments across the contiguous United States. Results show that climate characteristics such as aridity and precipitation phase (snow or rain) and land attributes such as topography and soil texture are key drivers of streamflow generation dynamics. In particular, steeper slopes generally promoted more streamflow, regardless of aridity. Streams in flat, rainy sites (< 30% precipitation as snow) with finer soils exhibited flashier regimes than those in snowy sites (> 30% precipitation as snow) or sites with coarse soils and deeper flow paths. In snowy sites, less weathered, thinner soils promoted shallower flow paths such that discharge was more sensitive to changes in storage, but snow dampened streamflow flashiness overall. Results here indicate that land characteristics such as steepness and soil texture modify subsurface water storage and shallow and deep flow partitioning, ultimately regulating streamflow response to climate forcing. As climate change increases uncertainty in water availability, understanding the interacting climate and landscape features that regulate streamflow will be essential to predict hydrological shifts in headwater catchments and improve water resources management. 
    more » « less
  4. Daily stream flow and groundwater dynamics in forested subalpine catchments during spring are to a large extent controlled by hydrological processes that respond to the day-night energy cycle. Diurnal snowmelt and transpiration events combine to induce pressure variations in the soil water storage that are propagated to the stream. In headwater catchments these pressure variations can account for a significant amount of the total pressure in the system and control the magnitude, duration, and timing of stream inflow pulses at daily scales, especially in low flow systems. Changes in the radiative balance at the top of the snowpack can alter the diurnal hydrologic dynamics of the hillslope-stream system with potential ecological and management consequences. We present a detailed hourly dataset of atmospheric, hillslope, and streamflow measurements collected during one melt season from a semi-alpine headwater catchment in western Montana, US. We use this dataset to investigate the timing, pattern, and linkages among snowmelt-dominated hydrologic processes and assess the role of the snowpack, transpiration, and hillslopes in mediating daily movements of water from the top of the snowpack to local stream systems. We found that the amount of snowpack cold content accumulated during the night, which must be overcome every morning before snowmelt resumes, delayed water recharge inputs by up to 3 hours early in the melt season. These delays were further exacerbated by multi-day storms (cold fronts), which resulted in significant depletions in the soil and stream storages. We also found that both diurnal snowmelt and transpiration signals are present in the diurnal soil and stream storage fluctuations, although the individual contributions of these processes is difficult to discern. Our analysis showed that the hydrologic response of the snow-hillslope-stream system is highly sensitive to atmospheric drivers at hourly scales, and that variations in atmospheric energy inputs or other stresses are quickly transmitted and alter the intensity, duration and timing of snowmelt pulses and soil water extractions by vegetation, which ultimately drive variations in soil and stream water pressures. 
    more » « less
  5. Understanding how diverse headwater streams contribute water downstream is critical for accurate modelling of seasonal flow dynamics in larger systems. This study investigated how headwater catchments, with diverse subsurface storage, influence downstream flows within Lookout Creek—a 62 km2, 5th‐order catchment in the rain‐snow transition zone in western Oregon, USA. We analysed one year of hydrometric and water stable isotope data collected at 10 stream locations, complemented by a decade of precipitation isotopic data. As expected, isotopic data revealed that most of the streamflow was sourced from large fall and winter storms. Generally, stream isotope ratios decrease with elevation. However, some streams had higher isotopic values than expected, reflecting the influence of isotopically heavy storms and relatively low storage. Other streams that tended to have low flow variability in response to precipitation inputs had lower isotopic values, indicating higher elevation water sources than their topographic watershed boundaries. Both hydrometric data and water isotope‐based end‐member mixing models suggest storage differences among headwater catchments influenced the seasonal water contributions from tributaries. Most notably, the contributions of Cold and Longer Creeks, which occupy less than 10% of the Lookout Creek drainage area, sustain up to 50% of the streamflow in the summer. These catchments have high storage and high groundwater contributions, as evidenced by flat flow duration curves. Finally, our data suggest that geologic variability and geomorphic complexity (presence of earthflows and landslides) can be indicators of storage that dramatically influence water movement through the critical zone, the variation in streamflow, and the response of streams to precipitation events. Heterogeneity in headwater catchment storage is key to understanding flow dynamics in mountainous regions and the response of streams to changes in climate and other disturbances. 
    more » « less