Latent diffusion models have been demonstrated to generate high-quality images, while offering efficiency in model training compared to diffusion models operating in the pixel space. However, incorporating latent diffusion models to solve inverse problems remains a challenging problem due to the nonlinearity of the encoder and decoder. To address these issues, we propose ReSample, an algorithm that can solve general inverse problems with pre-trained latent diffusion models. Our algorithm incorporates data consistency by solving an optimization problem during the reverse sampling process, a concept that we term as hard data consistency. Upon solving this optimization problem, we propose a novel resampling scheme to map the measurement-consistent sample back onto the noisy data manifold and theoretically demonstrate its benefits. Lastly, we apply our algorithm to solve a wide range of linear and nonlinear inverse problems in both natural and medical images, demonstrating that our approach outperforms existing state-of-the-art approaches, including those based on pixel-space diffusion models.
more »
« less
DIRACDIFFUSION: DENOISING AND INCREMENTAL RECONSTRUCTION WITH ASSURED DATA-CONSISTENCY
Diffusion models have established new state of the art in a multitude of computer vision tasks, in- cluding image restoration. Diffusion-based inverse problem solvers generate reconstructions of ex- ceptional visual quality from heavily corrupted measurements. However, in what is widely known as the perception-distortion trade-off, the price of perceptually appealing reconstructions is often paid in declined distortion metrics, such as PSNR. Distortion metrics measure faithfulness to the observation, a crucial requirement in inverse problems. In this work, we propose a novel framework for inverse problem solving, namely we assume that the observation comes from a stochastic degra- dation process that gradually degrades and noises the original clean image. We learn to reverse the degradation process in order to recover the clean image. Our technique maintains consistency with the original measurement throughout the reverse process, and allows for great flexibility in trading off perceptual quality for improved distortion metrics and sampling speedup via early-stopping. We demonstrate the efficiency of our method on different high-resolution datasets and inverse problems, achieving great improvements over other state-of-the-art diffusion-based methods with respect to both perceptual and distortion metrics. Source code and pre-trained models will be released soon.
more »
« less
- PAR ID:
- 10527380
- Publisher / Repository:
- Proceedings of International Conference on Machine Learning Research (ICML)
- Date Published:
- Format(s):
- Medium: X
- Location:
- Vienna, Austria
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Denoising diffusion probabilistic models are a promising new class of generative models that mark a milestone in high-quality image generation. This paper showcases their ability to sequentially generate video, surpassing prior methods in perceptual and probabilistic forecasting metrics. We propose an autoregressive, end-to-end optimized video diffusion model inspired by recent advances in neural video compression. The model successively generates future frames by correcting a deterministic next-frame prediction using a stochastic residual generated by an inverse diffusion process. We compare this approach against six baselines on four datasets involving natural and simulation-based videos. We find significant improvements in terms of perceptual quality and probabilistic frame forecasting ability for all datasets.more » « less
-
Inverse problems arise in a multitude of applications, where the goal is to recover a clean signal from noisy and possibly (non)linear observations. The difficulty of a reconstruction problem depends on multiple factors, such as the ground truth signal structure, the severity of the degradation and the complex interactions between the above. This results in natural sample-by-sample variation in the difficulty of a reconstruction problem. Our key observation is that most existing inverse problem solvers lack the ability to adapt their compute power to the difficulty of the reconstruction task, resulting in subpar performance and wasteful resource allocation. We propose a novel method, severity encoding, to estimate the degradation severity of corrupted signals in the latent space of an autoencoder. We show that the estimated severity has strong correlation with the true corruption level and can provide useful hints on the difficulty of reconstruction problems on a sample-by-sample basis. Furthermore, we propose a reconstruction method based on latent diffusion models that leverages the predicted degradation severities to fine-tune the reverse diffusion sampling trajectory and thus achieve sample-adaptive inference times. Our framework, Flash-Diffusion, acts as a wrapper that can be combined with any latent diffusion-based baseline solver, imbuing it with sample-adaptivity and acceleration. We perform experiments on both linear and nonlinear inverse problems and demonstrate that our technique greatly improves the performance of the baseline solver and achieves up to 10× acceleration in mean sampling speed.more » « less
-
We provide a framework for solving inverse problems with diffusion models learned from linearly corrupted data. Firstly, we extend the Ambient Diffusion framework to enable training directly from measurements corrupted in the Fourier domain. Subsequently, we train diffusion models for MRI with access only to Fourier sub- sampled multi-coil measurements at acceleration factors R= 2,4,6,8. Secondly, we propose Ambient Diffusion Posterior Sampling (A-DPS), a reconstruction al- gorithm that leverages generative models pre-trained on one type of corruption (e.g. image inpainting) to perform posterior sampling on measurements from a different forward process (e.g. image blurring). For MRI reconstruction in high acceleration regimes, we observe that A-DPS models trained on subsampled data are better suited to solving inverse problems than models trained on fully sampled data. We also test the efficacy of A-DPS on natural image datasets (CelebA, FFHQ, and AFHQ) and show that A-DPS can sometimes outperform models trained on clean data for several image restoration tasks in both speed and performance.more » « less
-
The inference stage of diffusion models involves running a reverse-time diffusion stochastic differential equation, transforming samples from a Gaussian latent distribution into samples from a target distribution on a low-dimensional manifold. The intermediate values can be interpreted as noisy images, with the amount of noise determined by the forward diffusion process noise schedule. Boomerang is an approach for local sampling of image manifolds, which involves adding noise to an input image, moving it closer to the latent space, and mapping it back to the image manifold through a partial reverse diffusion process. Boomerang can be used with any pretrained diffusion model without adjustments to the reverse diffusion process, and we present three applications: constructing privacy-preserving datasets with controllable anonymity, increasing generalization performance with Boomerang for data augmentation, and enhancing resolution with a perceptual image enhancement framework.more » « less
An official website of the United States government

