Abstract Violent solar flares and coronal mass ejections (CMEs) are magnetic phenomena. However, how magnetic fields reconnecting in the flare differ from nonflaring magnetic fields remains unclear owing to the lack of studies of the flare magnetic properties. Here we present a first statistical study of flaring (highlighted by flare ribbons) vector magnetic fields in the photosphere. Our systematic approach allows us to describe the key physical properties of solar flare magnetism, including distributions of magnetic flux, magnetic shear, vertical current, and net current over flaring versus nonflaring parts of the active region (AR), and compare these with flare/CME properties. Our analysis suggests that while flares are guided by the physical properties that scale with AR size, like the total amount of magnetic flux that participates in the reconnection process and the total current (extensive properties), CMEs are guided by mean properties, like the fraction of the AR magnetic flux that participates (intensive property), with little dependence on the amount of shear at the polarity inversion line (PIL) or the net current. We find that the nonneutralized current is proportional to the amount of shear at the PIL, providing direct evidence that net vertical currents are formed as a result of any mechanism that could generate magnetic shear along the PIL. We also find that eruptive events tend to have smaller PIL fluxes and larger magnetic shears than confined events. Our analysis provides a reference for more realistic solar and stellar flare models. The database is available online and can be used for future quantitative studies of flare magnetism.
more »
« less
Nonneutralized Electric Currents as a Proxy for Eruptive Activity in Solar Active Regions
Abstract It has been suggested that the ratio of photospheric direct to return current, ∣DC/RC∣, may be a better proxy for assessing the ability of solar active regions to produce a coronal mass ejection (CME) than others such as the amount of shear along the polarity inversion line (PIL). To test this conjecture, we measure both quantities prior to eruptive and confined flares of varying magnitude. We find that eruptive-flare source regions have ∣DC/RC∣ > 1.63 and PIL shear above 45° (average values of 3.°2 and 68°, respectively), tending to be larger for stronger events, while both quantities are on average smaller for confined-flare source regions (2.°2 and 68°, respectively), albeit with substantial overlap. Many source regions, especially those of eruptive X-class flares, exhibit elongated direct currents (EDCs) bracketing the eruptive PIL segment, which typically coincide with areas of continuous PIL shear above 45°. However, a small subset of confined-flare source regions have ∣DC/RC∣ close to unity, very low PIL shear (<38°), and no clear EDC signatures, rendering such regions less likely to produce a CME. A simple quantitative analysis reveals that ∣DC/RC∣ and PIL shear are almost equally good proxies for assessing CME-productivity, comparable to other proxies suggested in the literature. We also show that an inadequate selection of the current-integration area typically yields a substantial underestimation of ∣DC/RC∣, discuss specific cases that require careful consideration for ∣DC/RC∣ calculation and interpretation of the results, and suggest improving photospheric CME-productivity proxies by incorporating coronal measures such as the decay index.
more »
« less
- PAR ID:
- 10527577
- Publisher / Repository:
- American Astronomical Society
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 961
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 148
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract With the aim of investigating how the magnetic field in solar active regions (ARs) controls flare activity, i.e., whether a confined or eruptive flare occurs, we analyze 106 flares of Geostationary Operational Environmental Satellite class ≥M1.0 during 2010–2019. We calculate mean characteristic twist parameters α FPIL within the “flaring polarity inversion line” region and α HFED within the area of high photospheric magnetic free energy density, which both provide measures of the nonpotentiality of the AR core region. Magnetic twist is thought to be related to the driving force of electric current-driven instabilities, such as the helical kink instability. We also calculate total unsigned magnetic flux (Φ AR ) of ARs producing the flare, which describes the strength of the background field confinement. By considering both the constraining effect of background magnetic fields and the magnetic nonpotentiality of ARs, we propose a new parameter α /Φ AR to measure the probability for a large flare to be associated with a coronal mass ejection (CME). We find that in about 90% of eruptive flares, α FPIL /Φ AR and α HFED /Φ AR are beyond critical values (2.2 × 10 −24 and 3.2 × 10 −24 Mm −1 Mx −1 ), whereas they are less than critical values in ∼80% of confined flares. This indicates that the new parameter α /Φ AR is well able to distinguish eruptive flares from confined flares. Our investigation suggests that the relative measure of magnetic nonpotentiality within the AR core over the restriction of the background field largely controls the capability of ARs to produce eruptive flares.more » « less
-
Context.Erupting magnetic flux ropes (MFRs) are believed to play a crucial role in producing solar flares. However, the formation of erupting MFRs in complex coronal magnetic configurations and the role of their subsequent evolution in the flaring events are not fully understood. Aims.We perform a magnetohydrodynamic (MHD) simulation of active region NOAA 12241 to understand the formation of a rising magnetic flux rope during the onset of an M6.9 flare on 2014 December 18 around 21:41 UT (SOL2014-12- 18T21:41M6.9), which was followed by the appearance of parallel flare ribbons. Methods.The MHD simulation was initialised with an extrapolated non-force-free magnetic field generated from the photospheric vector magnetogram of the active region taken a few minutes before the flare. Results.The initial magnetic field topology displays a pre-existing sheared arcade enveloping the polarity inversion line. The simulated dynamics exhibit the movement of the oppositely directed legs of the sheared arcade field lines towards each other due to the converging Lorentz force, resulting in the onset of tether-cutting magnetic reconnection that produces an underlying flare arcade and flare ribbons. Concurrently, a magnetic flux rope above the flare arcade develops inside the sheared arcade and shows a rising motion. The flux rope is found to be formed in a torus-unstable region, thereby explaining its eruptive nature. Interestingly, the location and rise of the rope are in good agreement with the corresponding observations seen in extreme-ultraviolet channels of the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO). Furthermore, the foot points of the simulation’s flare arcade match well with the location of the observed parallel ribbons of the flare. Conclusions.The presented simulation supports the development of the MFR by the tether-cutting magnetic reconnection inside the sheared coronal arcade during flare onset. The MFR is then found to extend along the polarity inversion line (PIL) through slip-running reconnection. The MFR’s eruptive nature is ascribed both to its formation in the torus-unstable region and also to the runaway tether-cutting reconnection.more » « less
-
The coronal magnetic field over NOAA Active Region 11,429 during a X5.4 solar flare on 7 March 2012 is modeled using optimization based Non-Linear Force-Free Field extrapolation. Specifically, 3D magnetic fields were modeled for 11 timesteps using the 12-min cadence Solar Dynamics Observatory (SDO) Helioseismic and Magnetic Imager photospheric vector magnetic field data, spanning a time period of 1 hour before through 1 hour after the start of the flare. Using the modeled coronal magnetic field data, seven different magnetic field parameters were calculated for 3 separate regions: areas with surface | B z |≥ 300 G, areas of flare brightening seen in SDO Atmospheric Imaging Assembly imagery, and areas with surface | B | ≥ 1000 G and high twist. Time series of the magnetic field parameters were analyzed to investigate the evolution of the coronal field during the solar flare event and discern pre-eruptive signatures. The data shows that areas with | B | ≥ 1000 G and | T w |≥ 1.5 align well with areas of initial flare brightening during the pre-flare phase and at the beginning of the eruptive phase of the flare, suggesting that measurements of the photospheric magnetic field strength and twist can be used to predict the flare location within an active region if triggered. Additionally, the evolution of seven investigated magnetic field parameters indicated a destabilizing magnetic field structure that could likely erupt.more » « less
-
Abstract Magnetic polarity inversion lines (PILs) detected in solar active regions have long been recognized as arguably the most essential feature for triggering instabilities such as flares and eruptive events (i.e., eruptive flares and coronal mass ejections). In recent years, efforts have been focused on using features engineered from PILs for solar eruption prediction. However, PIL rasters and metadata are often generated as by-products and are not accessible for public use, which limits their utilization in data-intensive space weather analytics applications. We introduce a large-scale publicly available PIL data set covering practically the entire solar cycle 24 for applying to various space weather forecasting and analytics tasks. The data set is created using both radial magnetic field (B_r) and line-of-sight (B_LoS) magnetograms from the Solar Dynamics Observatory’s Helioseismic and Magnetic Imager Active Region Patches (HARP) that involve 4090 HARP series ranging from 2010 May to 2019 March. This data set includes three PIL-related binary masks of rasters: the actual PILs as per the spatial analysis of the magnetograms, the region of polarity inversion, and the convex hull of PILs, along with time-series-structured metadata extracted from these masks. We also provide a preliminary exploratory analysis of selected features aiming to correlate time series of feature metadata and eruptive activity originating from active regions. We envision that this comprehensive PIL data set will complement existing data sets used for space weather forecasting and benefit research in related areas, specifically in better understanding the PIL structure, evolution, and role in eruptions.more » « less
An official website of the United States government

