skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The effects of Surfactin on sprayed droplets in flat fan, full cone, and low energy precision application bubbler nozzles: droplet formation and spray breakup
Introduction:Agriculture is the largest user of water globally (i.e., 70% of freshwater use) and within the United States (i.e., 42% of freshwater use); irrigation ensures crops receive adequate water, thereby increasing crop yields. Surfactants have been used in various agricultural spray products to increase spray stability and alter droplet sizes. Methods:The effects of the addition of surfactant (0.1 wt% Surfactin; surface tension of 29.2 mN/m) to distilled water (72.79 mN/m) on spray dynamics and droplet formation were investigated in four flat fan (206.8–413.7 kPa), one full cone (137.9–413.7 kPa), and three LEPA bubbler (41.4–103.4 kPa) nozzles via imaging. Results and discussion:The flat fan and cone nozzles experienced second wind-induced breakup (i.e., unstable wavelengths drive breakup) of the liquid sheets exiting the nozzle; the addition of surfactant resulted in an increased breakup length and a decreased droplet size. The fan nozzles volumetric median droplet diameter decreased with the addition of surfactant (e.g., decreased by 26.3–65.6 μm in one nozzle). The full cone nozzle volumetric median droplet diameter decreased initially with the addition of surfactant (27.8, 14.3, and 13.4 μm at 137.9, 206.8, and 310.3 kPa respectively), but increased at 413.7 kPa (24.3 μm). Sprays from the bubbler nozzles were measured and observed to experience Rayleigh (i.e., the droplets form via capillary pinching at the end of the jet) and first wind-induced breakup (i.e., air impacts breakup along with capillary pinching). The effect of Surfactin on droplet size was minimal for the 41.4 kPa bubbler nozzle. The addition of surfactant increased the diameter of the jet or ligament formed from the bubbler plate, thereby increasing the breakup length and the droplet size at 68.9 and 103.4 kPa (droplet size increased by 750.6 and 4,462.7 μm, respectively).  more » « less
Award ID(s):
1828571
PAR ID:
10527642
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Mechanical Engineering
Volume:
10
ISSN:
2297-3079
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study investigates the atomization process in Respimat® Soft MistTM Inhalers (SMIs) using a validated Volume of Fluid (VOF)-to-Discrete Phase Model (DPM) to simulate the transition from colliding liquid jets to aerosolized droplets. Key parameters, including colliding jet inlet velocity, surface tension, and liquid viscosity, were systematically varied to analyze their impact on the atomization, i.e., aerosolized droplet size distributions. The VOF-to-DPM simulation results indicate that higher jet inlet velocities enhance ligament fragmentation, producing finer and more uniform droplets while reducing total atomized droplet mass. The relationship between surface tension and atomization performance in colliding jet atomization is not monotonic. Reducing surface tension plays a complex dual role in the atomization process. On the one hand, lower surface tension enhances the likelihood of liquid jet breakup into a liquid sheet, leading to the formation of smaller ligaments under the same airflow conditions and shear forces. This increases the probability of generating more secondary droplets. On the other hand, reduced surface tension also destabilizes the liquid surface shape, decreasing the formation of fine, high-sphericity droplets in regimes where surface tension is a dominant force. Viscosity also influences atomization through complex mechanisms, i.e., lower viscosity reduces resistance to ligament breakup but promotes droplet interactions and coalescence, while higher viscosity suppresses ligament fragmentation, generating larger droplets and reducing atomization efficiency. The validated VOF-to-DPM framework provides critical insights for enhancing the performance and efficiency of inhalation therapies. Future work will incorporate nozzle geometry, jet impingement angles, and surfactant effects to better understand and optimize the atomization process in SMIs, focusing on achieving preferred droplet size distributions and emitted doses for enhanced drug delivery efficiency in human respiratory systems. 
    more » « less
  2. Electrostatic rotary bell atomizers are commonly used in several engineering applications, including the automobile industry. A high-speed rotating nozzle operating in a strong background electric field atomizes paint into charged droplets that range from a few micrometers to tens of micrometers in diameter. The atomization process directly determines the droplet size and droplet charge distributions which subsequently control the transfer efficiency and the surface finish quality. We have previously developed a tool to perform high fidelity simulations of near-bell atomization with electrohydrodynamic effects. In this work, we perform simulations employed with a droplet ancestry extraction tool to analyze previously inaccessible information and understand the physical processes driving atomization. We find that the electric field accelerates breakup processes and enhances secondary atomization. The total number of droplets, the ratio of secondary to primary droplets, and the ratio of coalescence to breakup activity are all much higher when operating in an electric field. We analyze the droplet velocity, local Weber number and charge density statistics to understand the complex physics in electrically assisted breakup. The results of the study have helped us gain insights into the physics of atomization in electrostatic rotary sprays. 
    more » « less
  3. Paul B. Tchounwou (Ed.)
    Abstract: The COVID-19 pandemic has resulted in high demand for disinfection technologies. However, the corresponding spray technologies are still not completely optimized for disinfection purposes. There are important problems, like the irregular coverage and dripping of disinfectant solutions on hard and vertical surfaces. In this study, we highlight two major points. Firstly, we discuss the effectiveness of the electrostatic spray deposition (ESD) of nanoparticle-based disinfectant solutions for systematic and long-lasting disinfection. Secondly, we show that, based on the type of material of the substrate, the effectiveness of ESD varies. Accordingly, 12 frequently touched surface materials were sprayed using a range of electrostatic spray system parameters, including ion generator voltage, nozzle spray size and distance of spray. It was observed that for most cases, the surfaces become completely covered with the nanoparticles within 10 s. Acrylic, Teflon, PVC, and polypropylene surfaces show a distinct effect of ESD and non-ESD sprays. The nanoparticles form a uniform layer with better surface coverage in case of electrostatic deposition. Quantitative variations and correlations show that 1.5 feet of working distance, an 80 μm spray nozzle diameter and an ion generator voltage of 3–7 kV ensures a DEF (differential electric field) that corresponds to an optimized charge-to-mass ratio, ensuring efficient coverage of nanoparticles. 
    more » « less
  4. Fuels when sprayed under superheated and elevated fuel pressure show different behavior than traditional fuel injection sprays. In this work optical diagnostics were used to study the behavior of Jet A-1 under subcritical, transcritical, and supercritical sprays into open air ambience. Five different temperatures were tested, and the resultant spray images were processed to obtain quantitative measurements such as spray penetrations, and spray cone angle for each case. The spray structure transition with changing parameters from subcritical, transcritical, and supercritical states were also studied. The transition between the three different states are shown in this study and the resulting spray cone angles and penetrations are compared for the fuel. The results show that a transcritical spray has a measurable variation in the spray cone formation and penetration process for a fixed injection pressure. At this state the spray cone shows a bimodal spray angle relationship with increasing penetration. Flash boiling of the fuel is observed near the nozzle of the injector. Increasing the temperature further into the supercritical regime, the spray plume shows a thinning of the jet near the nozzle with a reduced overall penetration compared to lower temperatures. 
    more » « less
  5. Rotary Bell Atomizers (RBA) are extensively used as paint applicators in the automotive industry. Atomization of paint is achieved by a bell cup rotating at speeds of 40k-60k RPM in the presence of a background electric field. Automotive paint shops amount up to 70% of the total energy costs [Galitsky et. al., 2008], 50% of the electricity demand [Leven et. al., 2001] and up to 80% of the environmental concerns [Geffen et al., 2000] in an automobile manufacturing facility. The atomization process in an RBA affects droplet size and velocity distribution which subsequently control transfer efficiency and surface finish quality. Optimal spray parameters used in industry are often obtained from expensive trial-and-error methods. In this work, three-dimensional near-cup atomization (primary and secondary breakup) are simulated computationally using a high-fidelity volume-of-fluid transport scheme that includes an electrohydrodynamic effects. The influence of fluid properties (viscosity ratio, flow rate and charge density), nozzle rotation rate and bell potential on atomization are investigated by performing a parametric study. This cost-effective method of research aims to identify the ideal spray parameters to achieve maximum transfer efficiency. 
    more » « less