ABSTRACT Neutron stars in astrophysical binary systems represent exciting sources for multimessenger astrophysics. A potential source of electromagnetic transients from compact binary systems is the neutron star ocean, the external fluid layer encasing a neutron star. We present a groundwork study into tidal waves in neutron star oceans and their consequences. Specifically, we investigate how oscillation modes in neutron star oceans can be tidally excited during compact binary inspirals and parabolic encounters. We find that neutron star oceans can sustain tidal waves with frequencies between 0.01 and 20 Hz. Our results suggest that tidally resonant neutron star ocean waves may serve as a never-before studied source of precursor electromagnetic emission prior to neutron star–black hole and binary neutron star mergers. If accompanied by electromagnetic flares, tidally resonant neutron star ocean waves, whose energy budget can reach 1046 erg, may serve as early warning signs (≳1 min before merger) for compact binary mergers. Similarly, excited ocean tidal waves will coincide with neutron star parabolic encounters. Depending on the neutron star ocean model and a flare emission scenario, tidally resonant ocean flares may be detectable by Fermi and Nuclear Spectroscopic Telescope Array (NuSTAR) out to ≳100 Mpc with detection rates as high as ∼7 yr−1 for binary neutron stars and ∼0.6 yr−1 for neutron star–black hole binaries. Observations of emission from neutron star ocean tidal waves along with gravitational waves will provide insight into the equation of state at the neutron star surface, the composition of neutron star oceans and crusts, and neutron star geophysics. 
                        more » 
                        « less   
                    
                            
                            Design of an optimized nested-mirror neutron reflector for a NNBAR experiment
                        
                    
    
            Conceptual design of a nested mirror assembly for neutron anti-neutron oscillation measurements is presented, with the specific focus of potential advantages for fabrication of large-scale optics. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2209590
- PAR ID:
- 10527646
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Esevier (Nuclear Instruments and Methods in Physics Research A)
- Date Published:
- Journal Name:
- Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
- Edition / Version:
- 1
- Volume:
- 1051
- Issue:
- C
- ISSN:
- 0168-9002
- Page Range / eLocation ID:
- 168235
- Subject(s) / Keyword(s):
- fundamental neutron physics, fundamental symmetries, baryon number violation, particle physics, neutron optics
- Format(s):
- Medium: X Size: 2.66 Mb Other: pdf
- Size(s):
- 2.66 Mb
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Recent experimental and ab initio theory investigations of the 208Pb neutron skin thickness have the potential to inform the neutron star equation of state. In particular, the strong correlation between the 208Pb neutron skin thickness and the pressure of neutron matter at normal nuclear densities leads to modified predictions for the radii, tidal deformabilities, and moments of inertia of typical 1.4M⊙ neutron stars. In the present work, we study the relative impact of these recent analyses of the 208Pb neutron skin thickness on bulk properties of neutron stars within a Bayesian statistical analysis. Two models for the equation of state prior are employed in order to highlight the role of the highly uncertain high-density equation of state. From our combined Bayesian analysis of nuclear theory, nuclear experiment, and observational constraints on the dense matter equation of state, we find at the 90% credibility level R1.4=12.36−0.73+0.38 km for the radius of a 1.4M⊙ neutron star, R2.0=11.96−0.71+0.94 km for the radius of a 2.0M⊙ neutron star, Λ1.4=440−144+103 for the tidal deformability of a 1.4M⊙ neutron star, and I1.338=1.425−0.146+0.074×1045gcm2 for the moment of inertia of PSR J0737-3039A whose mass is 1.338M⊙.more » « less
- 
            Abstract The detection of low-frequency gravitational waves on Earth requires the reduction of displacement noise, which dominates the low-frequency band. One method to cancel test mass displacement noise is a neutron displacement-noise-free interferometer (DFI). This paper proposes a new neutron DFI configuration, a Sagnac-type neutron DFI, which uses a Sagnac interferometer in place of the Mach–Zehnder interferometer. We demonstrate that a sensitivity of the Sagnac-type neutron DFI is higher than that of a conventional neutron DFI with the same interferometer scale. This configuration is particularly significant for neutron DFIs with limited space for construction and limited flux from available neutron sources.more » « less
- 
            Balantekin, B (Ed.)A new nonlocal dispersive-optical-model analysis has been carried out for neutrons and protons in 48Ca that reproduces the weak-form-factor measurement of CREX. In addition to elastic-scattering angular distributions, total and reaction cross sections, single-particle energies, the neutron and proton numbers, and the charge distribution, the CREX-measured weak form factor has been fit to extract the neutron and proton self-energies both above and below the Fermi energy. The resulting single-particle propagators yield a weak form factor of 𝐹𝑊 =0.125±0.05 and a neutron skin of 𝑅skin =0.152±0.05 fm, in good agreement with CREX. The rearrangement of the neutron distribution to accommodate such a thin neutron skin results in the high-momentum content of the neutrons exceeding that of the protons, in contrast to what is expected from high-energy two-nucleon knockout measurements by the CLAS collaboration and ab initio asymmetric matter calculations. The present analysis also emphasizes the importance of neutron experimental data in constraining weak charge observables necessary for a precise description of neutron densities. Notably, the neutron reaction cross section and further parity-violating experiments weak form factor measurements are essential to generate a unique way to determine the 48Ca neutron distribution in this framework.more » « less
- 
            Abstract The collision of a primordial black hole with a neutron star results in the black hole eventually consuming the entire neutron star. However, if the black hole is magnetically charged, and therefore stable against decay by Hawking radiation, the consequences can be quite different. Upon colliding with a neutron star, a magnetic black hole very rapidly comes to a stop. For large enough magnetic charge, we show that this collision can be detected as a sudden change in the rotation period of the neutron star, a glitch or anti-glitch.We argue that the magnetic primordial black hole, which then settles to the core of the neutron star, does not necessarily devour the entire neutron star; the system can instead reach a long-lived, quasi-stable equilibrium. Because the black hole is microscopic compared to the neutron star, most stellar properties remain unchanged compared to before the collision. However, the neutron star will heat up and its surface magnetic field could potentially change, both effects potentially observable.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    